Skip to main content
Log in

Simultaneous determination of Pb(II) and Cd(II) by electrochemical method using ZnO/ErGO-modified electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Some heavy metals such as Pb, Cd, Hg and As are extremely hazardous to the human beings because of their non-biodegradable nature even at very low levels of exposure. Besides the standard methods such as Inductively Coupled Plasma (ICP)-Mass Spectrometry and ICP-Optical Emission Spectrometry, the other methods with fast, accurate and cheap requirements also need to be developed to detect these toxic heavy metals ions in aquatic sources. Recently the application of porous materials in the anodic stripping voltammetry has gained a great attention owing to high selectivity, sensitive and low cost. In the present study, a glassy carbon electrode (GCE) modified by ZnO- electrochemically reduced graphene oxide (ZnO/ErGO) was used for the electrochemical detection of Pd(II) and Cd(II). It is found that the surface area of ZnO/ErGO-GCE is 0.130 cm2 much larger than that of the bare GCE (0.083 cm2).The charge transfer resistance decreases significantly from 3212 Ω for the bare GCE to 924 Ω for ZnO/ErGO-GCE. These results manifest a fast electron transfer ratio of kinetics for the ZnO/ErGO-modified electrode. ZnO/ErGO-GCE exhibits excellent electrochemical performance towards the detection of Pb(II) and Cd(II) compared with ErGO-GCE and bare GCE. The peak current has a linear relationship with the Cd(II) and Pb(II) concentration in the 2.5–200 µM range. The limit of detection for Cd(II) and Pb(II) is 1.69 and 0.45 ppb, respectively. In addition, the electrochemical sensor exhibits excellent selectivity, stability, and repeatability in experimental studies, and it opens up great potential for detecting a trace amount of metals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  2. Saeed AA, Singh B, Nooredeen Abbas M, Dempsey E (2016) Evaluation of bismuth modified carbon thread electrode for simultaneous and highly sensitive cd (II) and pb (II) determination. Electroanalysis 28:2205–2213. https://doi.org/10.1002/elan.201600006

    Article  CAS  Google Scholar 

  3. World Health Organization (2017) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva, pp 219–230

    Google Scholar 

  4. Kalachev S, Makhotina I, Plakhotnik A, Belkin Y, Izembayeva A (2022) The role of drinking water in the human diet and the quality of bottled drinking water. J Hyg Eng Des 41:124

    Google Scholar 

  5. Valasques GS, dos Santos AMP, de Souza VS, Teixeira LS, Alves JP, de Jesus Santos M, dos Santos WP, Bezerra MA (2020) Multivariate optimization for the determination of cadmium and lead in crude palm oil by graphite furnace atomic absorption spectrometry after extraction induced by emulsion breaking. Microchem J 153:104401. https://doi.org/10.1016/j.microc.2019.104401

    Article  CAS  Google Scholar 

  6. Altunay N, Elik A, Bingöl D (2020) Simple and green heat-induced deep eutectic solvent microextraction for determination of lead and cadmium in vegetable samples by flame atomic absorption spectrometry: a multivariate study. Biol Trace Elem Res 198:324–331. https://doi.org/10.1007/s12011-020-02064-4

    Article  CAS  PubMed  Google Scholar 

  7. Nawi AM, Chin S-F, Jamal R (2020) Simultaneous analysis of 25 trace elements in micro volume of human serum by inductively coupled plasma mass spectrometry (ICP-MS). Practical Lab Med 18:e00142. https://doi.org/10.1016/j.plabm.2019.e00142

    Article  Google Scholar 

  8. Alhussaini HMA, Hossain MA, Arputhanantham SS (2022) Determination of toxic heavy metal content in a whitening creams by using inductively coupled plasma-optical emission spectrometry. Arab J Geosci 15:692. https://doi.org/10.1007/s12517-022-09932-4

    Article  CAS  Google Scholar 

  9. Yıldız C, Eskiköy Bayraktepe D, Yazan Z (2021) Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. Monatshefte für Chemie - Chemical Monthly 152:1527–1537. https://doi.org/10.1007/s00706-021-02865-w

    Article  CAS  Google Scholar 

  10. Oularbi L, Turmine M, El Rhazi M (2019) Preparation of novel nanocomposite consisting of bismuth particles, polypyrrole and multi-walled carbon nanotubes for simultaneous voltammetric determination of cadmium (II) and lead (II). Synth Met 253:1–8. https://doi.org/10.1016/j.synthmet.2019.04.011

    Article  CAS  Google Scholar 

  11. Li G, Qi X, Zhang G, Wang S, Li K, Wu J, Wan X, Liu Y, Li Q (2022) Low-cost voltammetric sensors for robust determination of toxic cd(II) and pb(II) in environment and food based on shuttle-like α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres. Microchem J 179:107515. https://doi.org/10.1016/j.microc.2022.107515

    Article  CAS  Google Scholar 

  12. Ghoreishi SM, Behpour M, Mousavi S, Khoobi A, Ghoreishi FS (2014) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid in the presence of sodium dodecyl sulphate using a multi-walled carbon nanotube modified carbon paste electrode. RSC Adv 4:37979–37984. https://doi.org/10.1039/C4RA04919E

    Article  ADS  CAS  Google Scholar 

  13. Valian M, Khoobi A, Salavati-Niasari M (2020) Green synthesis and characterization of DyMnO3-ZnO ceramic nanocomposites for the electrochemical ultratrace detection of atenolol. Mater Sci Engineering: C 111:110854. https://doi.org/10.1016/j.msec.2020.110854

    Article  CAS  Google Scholar 

  14. Khoobi A, Attaran AM, Yousofi M, Enhessari M (2019) A sensitive lead titanate nano-structured sensor for electrochemical determination of pentoxifylline drug in real samples. J Nanostructure Chem 9:29–37. https://doi.org/10.1007/s40097-019-0295-8

    Article  CAS  Google Scholar 

  15. Khoobi A, Ghoreishi SM, Behpour M (2014) Sensitive and selective determination of hydroxychloroquine in the presence of uric acid using a new nanostructure self-assembled monolayer modified electrode: optimization by multivariate data analysis. Analyst 139:4064–4072. https://doi.org/10.1039/C4AN00422A

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wang J (1985) Stripping analysis: principles, instrumentation, and applications, Vch Pub Inc. (ISBN 0–89573–143–6).

  17. Wang J (2023) Analytical electrochemistry. Wiley, Hoboken

    Google Scholar 

  18. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  19. Enhessari M, Salehabadi A, Khoobi A, Amiri R (2017) Kinetic properties and structural analysis of LaCrO3 nanoparticles. Mater Science-Poland 35:368–373. https://doi.org/10.1515/msp-2017-0043

    Article  ADS  CAS  Google Scholar 

  20. Arfin T, Rangari SN (2018) Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol. Anal Methods 10:347–358. https://doi.org/10.1039/C7AY02650A

    Article  CAS  Google Scholar 

  21. Liu X, Chen N, Xing X, Li Y, Xiao X, Wang Y, Djerdj I (2015) A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Adv 5:54372–54378. https://doi.org/10.1039/C5RA05148G

    Article  ADS  CAS  Google Scholar 

  22. Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. small 2:944–961

    Article  PubMed  Google Scholar 

  23. Li F, Ni B, Zheng Y, Huang Y, Li G (2021) A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surf Interfaces 26:101375. https://doi.org/10.1016/j.surfin.2021.101375

    Article  CAS  Google Scholar 

  24. Liu J, Huang H, Zhong S, She X, Yin D (2016) Electrochemical simultaneously determination of phenol and o-cresol in water based on ZnO nanosheets. Electrochem Sci 11:3921–3930. https://doi.org/10.20964/110497

    Article  CAS  Google Scholar 

  25. Palanisamy S, Chen S-M, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B 166:372–377. https://doi.org/10.1016/j.snb.2012.02.075

    Article  CAS  Google Scholar 

  26. Li D, Wu W, Zhang Y, Liu L, Pan C (2014) Preparation of ZnO/graphene heterojunction via high temperature and its photocatalytic property. J Mater Sci 49:1854–1860. https://doi.org/10.1007/s10853-013-7873-9

    Article  ADS  CAS  Google Scholar 

  27. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany A, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. Acs Nano 4:4806

    Article  CAS  PubMed  Google Scholar 

  28. Chimezie AB, Hajian R, Yusof NA, Woi PM, Shams N (2017) Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of as (III) in water resources. J Electroanal Chem 796:33–42. https://doi.org/10.1016/j.jelechem.2017.04.061

    Article  CAS  Google Scholar 

  29. Alharthi FA, Alsyahi AA, Alshammari SG, Al-Abdulkarim HA, AlFawaz A, Alsalme A (2022) Synthesis and characterization of rGO@ ZnO Nanocomposites for Esterification of Acetic Acid. ACS Omega 7:2786–2797. https://doi.org/10.1021/acsomega.1c05565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Shen H, Yu S, Zhang G, Ren C, Hu X, Yang Z (2020) Synthesis of a manganese dioxide nanorod-anchored graphene oxide composite for highly sensitive electrochemical sensing of dopamine. Analyst 145:3283–3288. https://doi.org/10.1039/D0AN00348D

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Alam M, Rahman MM, Uddin M, Asiri AM, Uddin J, Islam M (2020) Fabrication of enzyme-less folic acid sensor probe based on facile ternary doped Fe2O3/NiO/Mn2O3 nanoparticles. Curr Res Biotechnol 2:176–186. https://doi.org/10.1016/j.crbiot.2020.11.003

    Article  Google Scholar 

  32. Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:1–17. https://doi.org/10.1007/s00604-019-3248-5

    Article  ADS  CAS  Google Scholar 

  33. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  34. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B 101:382–387. https://doi.org/10.1016/j.apcatb.2010.10.007

    Article  CAS  Google Scholar 

  35. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. https://doi.org/10.1021/jp909284g

    Article  CAS  Google Scholar 

  36. Wang H, Robinson JT, Li X, Dai H (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911. https://doi.org/10.1021/ja904251p

    Article  CAS  PubMed  Google Scholar 

  37. Yang J, Zhao X, Shan X, Fan H, Yang L, Zhang Y, Li X (2013) Blue-shift of UV emission in ZnO/graphene composites. J Alloys Compd 556:1–5. https://doi.org/10.1016/j.jallcom.2012.12.098

    Article  CAS  Google Scholar 

  38. Pradhan G, Sharma YC (2021) Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: a highly efficient heterogeneous catalyst. Fuel 284:118966. https://doi.org/10.1016/j.fuel.2020.118966

    Article  CAS  Google Scholar 

  39. Hazmi B, Rashid U, Taufiq-Yap YH, Ibrahim ML, Nehdi IA (2020) Supermagnetic nano-bifunctional catalyst from rice husk: synthesis, characterization and application for conversion of used cooking oil to biodiesel. Catalysts 10:225. https://doi.org/10.3390/catal10020225

    Article  CAS  Google Scholar 

  40. AL-Gahouari T, Bodkhe G, Sayyad P, Ingle N, Mahadik M, Shirsat SM, Deshmukh M, Musahwar N, Shirsat M (2020) Electrochemical sensor: L-cysteine induced selectivity enhancement of electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid for detection of lead (pb 2+) ions. Front Mater 7:68. https://doi.org/10.3389/fmats.2020.00068

    Article  ADS  Google Scholar 

  41. Yıldız C, Bayraktepe DE, Yazan Z, Önal M (2022) Bismuth nanoparticles decorated on Na-montmorillonite-multiwall carbon nanotube for simultaneous determination of heavy metal ions-electrochemical methods. J Electroanal Chem 910:116205. https://doi.org/10.1016/j.jelechem.2022.116205

    Article  CAS  Google Scholar 

  42. da Conceição E, Buffon E, Stradiotto NR (2022) Lead signal enhancement in anodic stripping voltammetry using graphene oxide and pectin as electrode modifying agents for biofuel analysis. Fuel 325:124906. https://doi.org/10.1016/j.fuel.2022.124906

    Article  CAS  Google Scholar 

  43. Yi W, He Z, Fei J, He X (2019) Sensitive electrochemical sensor based on poly (L-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC Adv 9:17325–17334. https://doi.org/10.1039/C9RA01891C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bagherzadeh M, Jabouri-Abassi M, Akrami Z (2019) One-step synthesis of reduced graphene oxide and magnetic graphene: characterization and its application in electrochemical detection of lead (II) ions. J Mater Sci 30:20229–20242. https://doi.org/10.1007/s10854-019-02407-5

    Article  CAS  Google Scholar 

  45. Zhu X, Liu B, Chen S, Wu L, Yang J, Liang S, Xiao K, Hu J, Hou H (2020) Ultrasensitive and simultaneous electrochemical determination of Pb2+ and Cd2+ based on biomass derived lotus root-like hierarchical porous carbon/bismuth composite. J Electrochem Soc 167:087505

    Article  CAS  Google Scholar 

  46. Erçarıkcı E, Alanyalıoğlu M (2020) Dual-functional graphene-based flexible material for membrane filtration and electrochemical sensing of heavy metal ions. IEEE Sens J 21:2468–2475. https://doi.org/10.1109/JSEN.2020.3021988

    Article  ADS  Google Scholar 

  47. Baghayeri M, Alinezhad H, Fayazi M, Tarahomi M, Ghanei-Motlagh R, Maleki B (2019) A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace pb (II) and cd (II). Electrochim Acta 312:80–88. https://doi.org/10.1016/j.electacta.2019.04.180

    Article  CAS  Google Scholar 

  48. Mei J, Ying Z, Sheng W, Chen J, Xu J, Zheng P (2020) A sensitive and selective electrochemical sensor for the simultaneous determination of trace Cd2+ and Pb2+. Chem Pap 74:1027–1037. https://doi.org/10.1007/s11696-019-00942-3

    Article  CAS  Google Scholar 

  49. Nunes EW, Silva MK, Cesarino I (2020) Evaluation of a reduced graphene oxide-Sb nanoparticles electrochemical sensor for the detection of cadmium and lead in chamomile tea. Chemosensors 8:53. https://doi.org/10.3390/chemosensors8030053

    Article  CAS  Google Scholar 

  50. Horwitz W, Albert R (1997) Quality issues the concept of uncertainty as applied to chemical measurements. Analyst 122:615–617. https://doi.org/10.1039/A703178E

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Liu F, Huang W, Zhang Z, Zhang C, Huang Q, Xiang G, Liang M, Peng J (2021) Simultaneous detection of Cd2+ and Pb2+ with a bismuth film/sulfur and nitrogen co-doped porous graphene electrode. Int J Electrochem Sci 16:210610. https://doi.org/10.20964/2021.06.10

    Article  CAS  Google Scholar 

  52. Kiliç HD, Kizil H (2019) Simultaneous analysis of Pb2+ and Cd2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry. Anal Bioanalytical Chem 411:8113–8121. https://doi.org/10.1007/s00216-019-02193-3

    Article  CAS  Google Scholar 

  53. Lazanas AC, Tsirka K, Paipetis AS, Prodromidis MI (2020) 2D bismuthene/graphene modified electrodes for the ultra-sensitive stripping voltammetric determination of lead and cadmium. Electrochim Acta 336:135726. https://doi.org/10.1016/j.electacta.2020.135726

    Article  CAS  Google Scholar 

  54. Scandurra A, Ruffino F, Urso M, Grimaldi MG, Mirabella S (2020) Disposable and low-cost electrode based on graphene paper-nafion-bi nanostructures for ultra-trace determination of Pb(II) and Cd(II). Nanomaterials 10:1620. https://doi.org/10.3390/nano10081620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bahinting SED, Rollon AP, Garcia-Segura S, Garcia VCC, Ensano BMB, Abarca RRM, Yee J-J, de Luna MDG (2021) Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry. Sensors 21:1811. https://doi.org/10.3390/s21051811

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang W-J, Lu X-Y, Kong F-Y, Li H-Y, Wang Z-X, Wang W (2022) A reduced graphene oxide supported Au-Bi bimetallic nanoparticles as an enhanced sensing platform for simultaneous voltammetric determination of pb(II) and cd(II). Microchem J 175:107078. https://doi.org/10.1016/j.microc.2021.107078

    Article  CAS  Google Scholar 

  57. Miller J, Miller JC (2018) Statistics and chemometrics for analytical chemistry. Pearson education, London

    Google Scholar 

  58. Latimer GW Jr (2012) Appendix F: guidelines for standard method performance requirements, AOAC official methods of analysis

Download references

Acknowledgements

This article is funded by the Ministry of Education and Training, Vietnam, under the project with Code number: B2021-DHH-09.

Author information

Authors and Affiliations

Authors

Contributions

NDL, HTT, PYK conceived and designed the experiments and analyses. NHP, HXAV, and DQK performed the synthesis of ZnO/GO. NDL, DQK and HTT performed double probe measurements and analyzed the results. All the authors participated in the discussions and analyses of the data. NDL, HTT and DQK drafted the manuscript using contributions from all authors. All the authors read and edited the manuscript.

Corresponding authors

Correspondence to Ha Thuy Trang or Dinh Quang Khieu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 657.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyen, N.D., Trang, H.T., Khang, P.Y. et al. Simultaneous determination of Pb(II) and Cd(II) by electrochemical method using ZnO/ErGO-modified electrode. J Appl Electrochem 54, 917–933 (2024). https://doi.org/10.1007/s10800-023-02005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02005-8

Keywords

Navigation