Skip to main content
Log in

Effect of potential variation on morphology and photoelectrochemical properties of TiO2 nanotube arrays (TNAs) by two-step anodization method

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

TNAs have been synthesized using a two-step anodization method by increasing the second-step voltages. The titanium (Ti) foil was used as the anode, and the first step of anodization layer was removed by sonication in the deionized water. The second anodization step was conducted using the same electrolyte but at a higher potential. The modification of the second-step voltage was discussed with correlation for the morphology and photoelectrochemical performance of TNAs. Increasing the second voltage of two-step anodization leads to a decrease in the bandgap of the anatase phase of TNAs at 3.09 eV. The highly ordered TNAs were formed by increasing the second-step voltage based on the Fast Fourier Transform (FFT) images with a higher regularity ratio (RR) with 30 V for 30 min in the first step and 40 V for 30 min in the second step. The tube length of TNAs was produced in a short time of anodization. The photocurrent density of TNAs prepared by increasing voltage in the second step is higher than that of the one-step anodization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yoo JE, Zazpe R, Cha G et al (2018) Uniform ALD deposition of pt nanoparticles within 1D anodic TiO2 nanotubes for photocatalytic H2 generation. Electrochem Commun 86:6–11. https://doi.org/10.1016/j.elecom.2017.10.017

    Article  CAS  Google Scholar 

  2. Huo K, Gao B, Fu J, Chu PK (2014) Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv 4:17300–17324. https://doi.org/10.1039/c4ra01458h

    Article  CAS  ADS  Google Scholar 

  3. Yu R, Liu Z, Pourpoint F et al (2012) Nanoparticulate TiO2 (B): an anode for Lithium-ion batteries. Angewandte 51:2164–2167. https://doi.org/10.1002/anie.201108300

    Article  CAS  Google Scholar 

  4. Deng Y, Zhanhong M, Fengzhang R, Guangxin W (2019) Enhanced photoelectrochemical performance of TiO2 nanorod array films based on TiO2 compact layers synthesized by a two-step method. RSC Adv 9:21777–21785. https://doi.org/10.1039/c9ra03755a

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Hailiang L, Wang G, Niu J et al (2019) Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method. Results Phys 14:102499. https://doi.org/10.1016/j.rinp.2019.102499

    Article  Google Scholar 

  6. Pan HX, Feng LP, Zeng W et al (2019) Active Sites in single-layer BiOX (X = cl, br, and I) catalysts for the hydrogen evolution reaction. Inorg Chem 58:13195–13202. https://doi.org/10.1021/acs.inorgchem.9b02053

    Article  CAS  PubMed  Google Scholar 

  7. Inyoung Jeong YH, Park S, Bae M, Park H, Jeong P, Lee (2017) Solution-processed ultrathin TiO2 compact layer hybridized with Mesoporous TiO2 for high-performance Perovskite solar cells. ACS Appl Mater Interfaces 9:36865–36874. https://doi.org/10.1021/acsami.7b11901

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Yao M, Shen L (2019) The third generation photovoltaic cells based on photonic crystals. Mater Chem C. https://doi.org/10.1039/C8TC05461D

    Article  Google Scholar 

  9. Ge M, Cao C, Huang J et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801. https://doi.org/10.1039/c5ta09323f

    Article  CAS  Google Scholar 

  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature. https://doi.org/10.1038/238037a0

    Article  PubMed  Google Scholar 

  11. Sun WT, Yu A, Pan HY et al (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125. https://doi.org/10.1021/ja0777741

    Article  CAS  PubMed  Google Scholar 

  12. Kanghong W, Tong X, Zhou Y et al (2019) Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots. J Mater Chem A 7:14079–14088. https://doi.org/10.1039/c9ta03026c

    Article  CAS  Google Scholar 

  13. Regue M, Sibby S, Ahmet IY et al (2019) TiO2 photoanodes with exposed {0 1 0} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster. J Mater Chem A 7:19161–19172. https://doi.org/10.1039/c9ta04482e

    Article  CAS  Google Scholar 

  14. Kaur N, Mahajan A, Bhullar V et al (2019) Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Adv 9:20375–20384. https://doi.org/10.1039/c9ra02657f

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Strunk J, Ristig SS, Strunk J et al (2019) The fate of O2 in photocatalytic CO2 reduction on TiO2 under conditions of highest purity. PCCP 21:15949–15957. https://doi.org/10.1039/c8cp07765g

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Tong X, Shen W, Chen X, Corriou JP (2017) A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceram Int 43:14200–14209. https://doi.org/10.1016/j.ceramint.2017.07.165

    Article  CAS  Google Scholar 

  17. So S, Kriesch A UP and PS (2015) Conical-shaped Titania Nanotubes for Optimized Light Management in DSSCs Reach back-side illumination efficiencies > 8%. Mater Chem A. https://doi.org/10.1039/C5TA02834E

    Article  Google Scholar 

  18. Mohammadpour F, Moradi M (2015) Double-layer TiO2 nanotube arrays by two-step anodization: used in back and front-side illuminated dye-sensitized solar cells. Mater Sci Semicond Process 39:255–264. https://doi.org/10.1016/j.mssp.2015.04.048

    Article  CAS  Google Scholar 

  19. Le PH, Leu J (2018) Recent advances in TiO2 nanotube-based materials for photocatalytic applications designed by anodic oxidation. In: Yang D (ed) Titanium dioxide-material for sustainable environment. IntechOpen, London. https://doi.org/10.5772/intechopen.77063

    Chapter  Google Scholar 

  20. Liu N, Chen X, Zhang J, Schwank JW (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51. https://doi.org/10.1016/j.cattod.2013.10.090

    Article  CAS  Google Scholar 

  21. Lee J, Kim DH, Hong SH, Jho JY (2011) A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens Actuators B Chem 160:1494–1498. https://doi.org/10.1016/j.snb.2011.08.001

    Article  CAS  Google Scholar 

  22. Regonini D, Chen G, Leach C, Clemens FJ (2016) Comparison of photoelectrochemical properties of TiO2 nanotubes and sol–gel. Electrochim Acta 213:31–36. https://doi.org/10.1016/j.electacta.2016.07.097

    Article  CAS  Google Scholar 

  23. Galstyan V, Macak JM, Djenizian T (2022) Anodic TiO2 nanotubes: a promising material for energy conversion and storage. Appl Mater Today 29:101613. https://doi.org/10.1016/j.apmt.2022.101613

    Article  Google Scholar 

  24. Tesler AB, Altomare M, Schmuki P (2020) Morphology and optical properties of highly ordered TiO2 Nanotubes grown in NH4F/ o-H3PO4Electrolytes in view of light-harvesting and catalytic applications. ACS Appl Nano Mater 3:10646–10658. https://doi.org/10.1021/acsanm.0c01859

    Article  CAS  Google Scholar 

  25. Zwilling V, Aucouturier M, Darque-ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. Electrochem Approach 45:921–929

    CAS  Google Scholar 

  26. Gong D, Grimes CA, Varghese OK (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  CAS  ADS  Google Scholar 

  27. Daoai W, Yu B, Wang C et al (2009) A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv Mater 21:1964–1967. https://doi.org/10.1002/adma.200801996

    Article  CAS  Google Scholar 

  28. Hongjun W, Zhang Z (2011) Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J Solid State Chem 184:3202–3207. https://doi.org/10.1016/j.jssc.2011.10.012

    Article  CAS  ADS  Google Scholar 

  29. Pishkar N, Ghoranneviss M, Ghorannevis Z, Akbari H (2018) Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Results Phys 9:1246–1249. https://doi.org/10.1016/j.rinp.2018.02.009

    Article  ADS  Google Scholar 

  30. Shen Y, Yang S, Zhou P et al (2013) Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon N Y 62:157–164. https://doi.org/10.1016/j.carbon.2013.06.007

    Article  CAS  Google Scholar 

  31. Siyu C, Zhang S, Tan Z, Zhang S (2018) Effect of two-step anodization on structure of TiO2 nanotube arrays. Springer, Singapore

    Google Scholar 

  32. Nishanthi ST, Sundarakannan B, Subramanian E, Pathinettam Padiyan D (2015) Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renew Energy 77:300–307. https://doi.org/10.1016/j.renene.2014.12.038

    Article  CAS  Google Scholar 

  33. Lin C, Chen S, Cao L (2013) Anodic formation of aligned and bamboo-type TiO2 nanotubes at constant low voltages. Mater Sci Semicond Process 16:154–159. https://doi.org/10.1016/j.mssp.2012.05.009

    Article  CAS  Google Scholar 

  34. Zang Z, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512. https://doi.org/10.1039/c2ee03461a

    Article  CAS  Google Scholar 

  35. Horcas I, Fernández R, Gómez-Rodríguez JM et al (2007) WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705. https://doi.org/10.1063/1.2432410

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Stȩpniowski WJ, Nowak-Stȩpniowska A, Michalska-Domańska M et al (2014) Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina. Pol J Chem Technol 16:63–69. https://doi.org/10.2478/pjct-2014-0011

    Article  CAS  Google Scholar 

  37. Syauqi MI, Prasetia P, Gunlazuardi J (2023) The influence of sodium alginate in water-based electrolyte on the morphology of TiO2 nanotube prepared by anodization method. Mater Chem Phys 296:127234. https://doi.org/10.1016/j.matchemphys.2022.127234

    Article  CAS  Google Scholar 

  38. Guo T, Tian R, Wei A et al (2022) Effect of Ti rolling process on the enhanced interfacial adhesion between TiO2 and underlying Ti substrate. Electrochem Commun 135:107199. https://doi.org/10.1016/j.elecom.2022.107199

    Article  CAS  Google Scholar 

  39. Zhang W, Liu Y, Guo F et al (2019) Kinetic analysis of the anodic growth of TiO2 nanotubes: effects of voltage and temperature. J Mater Chem C 7:14098. https://doi.org/10.1039/c9tc04532e

    Article  CAS  Google Scholar 

  40. Jiaojiao G, Lai Y, Lin C (2010) Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochim Acta 55:4776–4782. https://doi.org/10.1016/j.electacta.2010.03.055

    Article  CAS  Google Scholar 

  41. Zhongzai Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35:8528–8535. https://doi.org/10.1016/j.ijhydene.2010.03.032

    Article  CAS  Google Scholar 

  42. Montakhab E, Rashchi F, Sheibani S (2020) Modification and photocatalytic activity of open channel TiO2 nanotubes array synthesized by anodization process. Appl Surf Sci 534:147581. https://doi.org/10.1016/j.apsusc.2020.147581

    Article  CAS  Google Scholar 

  43. Marques PA, Albertin KF, Monteiro GZ, Pereyra I (2019) Optimized synthesis for improved TiO2 NT array surface. Ceramica 65:327–334. https://doi.org/10.1590/0366-69132019653752583

    Article  CAS  Google Scholar 

  44. Bowen G, Sun M, Ding W et al (2021) Decoration of γ-graphyne on TiO2 nanotube arrays: improved photoelectrochemical and photoelectrocatalytic properties. Appl Catal B Environ 281:119492. https://doi.org/10.1016/j.apcatb.2020.119492

    Article  CAS  Google Scholar 

  45. Aich S, Mishra MK, Sekhar C et al (2016) Synthesis of Al-doped Nano Ti-O scaffolds using a hydrothermal route on Titanium foil for biomedical applications. Mater Lett 178:135–139. https://doi.org/10.1016/j.matlet.2016.05.003

    Article  CAS  Google Scholar 

  46. Bi Q, Zhang Z, Sun Y et al (2022) Preparation and performance of highly active and long-life mesopore Ti/SnO2–Sb electrodes for electrochemical degradation of phenol. J Alloys Compd 889:161657. https://doi.org/10.1016/j.jallcom.2021.161657

    Article  CAS  Google Scholar 

  47. Devesa S, Rooney AP, Graça MP et al (2021) Williamson-hall analysis in estimation of crystallite size and lattice strain in Bi1.34Fe0.66Nb1.34O6.35 prepared by the sol-gel method. Mater Sci Eng B Solid-State Mater Adv Technol 263:114830. https://doi.org/10.1016/j.mseb.2020.114830

    Article  CAS  Google Scholar 

  48. Zak KA, Abd. Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13:251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  ADS  Google Scholar 

  49. Munirathinam B, Pydimukkala H, Ramaswamy N, Neelakantan L (2015) Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes. Appl Surf Sci 355:1245–1253. https://doi.org/10.1016/j.apsusc.2015.08.017

    Article  CAS  ADS  Google Scholar 

  50. Bharti B, Barman PB, Kumar R (2015) XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method. AIP Conf Proc 1675:030025. https://doi.org/10.1063/1.4929241

    Article  Google Scholar 

  51. Kibasomba PM, Dhlamini S, Maaza M et al (2018) Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys 9:628–635. https://doi.org/10.1016/j.rinp.2018.03.008

    Article  ADS  Google Scholar 

  52. Costa LN, Nobre FX, Lobo AO, de Matos JME (2021) Photodegradation of ciprofloxacin using Z-scheme TiO2/SnO2 nanostructures as photocatalyst. Environ Nanatechnol Monit Manag 16:100466. https://doi.org/10.1016/j.enmm.2021.100466

    Article  CAS  Google Scholar 

  53. Pal A (2022) Comments on “X-Ray Analysis of Zno Nanoparticles by Williamson Hall and Size-Strain Plot Methods” Solid State Sciences 13 (2011) 251-256. Solid State Sci 135:107060

    Article  Google Scholar 

  54. Meftahi M, Hasan S, Habibi-rezaei M (2022) Fabrication of Mo-doped TiO 2 nanotube arrays photocatalysts: the effect of Mo dopant addition time to an aqueous electrolyte on the structure and photocatalytic activity. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.11.340

    Article  Google Scholar 

  55. Liang S, He J, Sun Z et al (2012) Improving Photoelectrochemical Water Splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J Phys Chem C 116:9049–9053

    Article  CAS  Google Scholar 

  56. Das S, Zazpe R, Prikryl J et al (2016) Influence of annealing temperatures on the properties of low aspect-ratio TiO2 nanotube layers. Electrochim Acta 213:452–459. https://doi.org/10.1016/j.electacta.2016.07.135

    Article  CAS  Google Scholar 

  57. Talla A, Suliali NJ, Goosen WE et al (2022) Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes. Phys B Condens Matter 640:414026. https://doi.org/10.1016/j.physb.2022.414026

    Article  CAS  Google Scholar 

  58. Ullah R, Rasheed MA, Abbas S et al (2022) Electrochemical sensing of H2O2 using cobalt oxide modified TiO2 nanotubes. Curr Appl Phys 38:40–48. https://doi.org/10.1016/j.cap.2022.02.008

    Article  ADS  Google Scholar 

  59. Jabeen S, Sherazi TA, Ullah R et al (2021) Electrodeposition-assisted formation of anodized TiO2–CuO heterojunctions for solar water splitting. Appl Nanosci 11:79–90. https://doi.org/10.1007/s13204-020-01557-x

    Article  CAS  ADS  Google Scholar 

  60. Yan J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418. https://doi.org/10.1039/c1jm10274e

    Article  CAS  Google Scholar 

  61. Kim KP, Lee SJ, Kim DH et al (2013) Dye-sensitized solar cells based on trench structured TiO2 nanotubes in Ti substrate. Curr Appl Phys 13:795–798. https://doi.org/10.1016/j.cap.2012.12.010

    Article  ADS  Google Scholar 

  62. Jaegyu K, Kim B, Oh C et al (2018) Effects of NH4F and distilled water on structure of pores in TiO2 nanotube arrays. Sci Rep 8:4–11. https://doi.org/10.1038/s41598-018-30668-3

    Article  CAS  Google Scholar 

  63. Ocampo RA, Echeverría F (2019) Effect of the anodization parameters on TiO 2 nanotubes characteristics produced in aqueous electrolytes with CMC. Appl Surf Sci 469:994–1006. https://doi.org/10.1016/j.apsusc.2018.11.097

    Article  CAS  ADS  Google Scholar 

  64. Stępniowski WJ, Nowak-Stępniowska A, Bojar Z (2013) Quantitative arrangement analysis of anodic alumina formed by short anodizations in oxalic acid. Mater Charact 78:79–86. https://doi.org/10.1016/j.matchar.2013.01.013

    Article  CAS  Google Scholar 

  65. Stępniowski WJ, Michalska-Domańska M, Norek M, Czujko T (2014) Fast Fourier transform based arrangement analysis of poorly organized alumina nanopores formed via self-organized anodization in chromic acid. Mater Lett 117:69–73. https://doi.org/10.1016/j.matlet.2013.11.099

    Article  CAS  Google Scholar 

  66. Alam U, Fleisch M, Kretschmer I et al (2017) One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl Catal B Environ 218:758–769. https://doi.org/10.1016/j.apcatb.2017.06.016

    Article  CAS  Google Scholar 

  67. Mir A, Iqbal K, Rubab S, Shah MA (2022) Effect of concentration of Fe-dopant on the photoelectrochemical properties of Titania nanotube arrays. Ceram Int 49:677–682. https://doi.org/10.1016/j.ceramint.2022.09.037

    Article  CAS  Google Scholar 

  68. Chaturvedi A, Dhillon SK, Kundu PP (2022) 1-D semiconducting TiO2 nanotubes supported efficient bimetallic co-ni cathode catalysts for power generation in single-chambered air-breathing microbial fuel cells. Sustain Energy Technol Assessments 53:102479. https://doi.org/10.1016/j.seta.2022.102479

    Article  Google Scholar 

  69. Durdu S, Sancak M, Yalcin E et al (2021) Surface characterization of TiO2 nanotube arrays produced on Ti6Al4V alloy by anodic oxidation. Surf Coat Technol 428:127903. https://doi.org/10.1016/j.surfcoat.2021.127903

    Article  CAS  Google Scholar 

  70. Xie Y, Ali G, Yoo SH, Cho SO (2010) Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl Mater Interfaces 2:2910–2914. https://doi.org/10.1021/am100605a

    Article  CAS  PubMed  Google Scholar 

  71. Saputri LNMZ, Gunlazuardi J (2020) TiO2 nanotube array prepared by anodization in Aqueous Electrolyte containing Sodium Carboxyl Methyl Cellulose. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1593/1/012043. 1593:

    Article  Google Scholar 

  72. Beranek R, Tsuchiya H, Sugishima T et al (2009) Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes  Appl Phys Lett 243114:1–4. https://doi.org/10.1063/1.2140085

    Article  CAS  Google Scholar 

  73. Adán C, Marugán J, Sánchez E et al (2016) Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim Acta 191:521–529. https://doi.org/10.1016/j.electacta.2016.01.088

    Article  CAS  Google Scholar 

  74. Misriyani, Wahab AW, Taba P, Gunlazuardi J (2017) Effect of anodizing time and annealing temperature on photoelectrochemical properties of anodized TiO2 nanotube for corrosion prevention application. Indones J Chem 17:219–227. https://doi.org/10.22146/ijc.24183

    Article  CAS  Google Scholar 

  75. Budiman H, Wibowo R, Zuas O, Gunlazuardi J (2021) Effect of annealing temperature on the characteristic of reduced highly ordered TiO2 nanotube arrays and their CO gas-sensing performance. Process Appl Ceram 15:417–427. https://doi.org/10.2298/PAC2104417B

    Article  CAS  Google Scholar 

  76. Budiman H, Wibowo R, Zuas O, Gunlazuardi J (2019) Photo-electrochemical properties of TiO2 nanotube arrays: Effect of different polishing method of Ti substrate prior to anodization in fluoride-H2O2-containing electrolyte. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1153/1/012073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SKWN contributed to acquisition data, laboratory, data analysis and/or interpretation, and writing-original draft/manuscript; MIS contibuted to data analysis or interpretation; RW contributed to critical revision, and approval of the final version of the manuscript; JG contributed to conceptualizing, design of the study, data analysis or interpretation, critical revision, and approval of the final version of the manuscript.

Corresponding author

Correspondence to Jarnuzi Gunlazuardi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningsih, S.K.W., Syauqi, M.I., Wibowo, R. et al. Effect of potential variation on morphology and photoelectrochemical properties of TiO2 nanotube arrays (TNAs) by two-step anodization method. J Appl Electrochem 54, 739–756 (2024). https://doi.org/10.1007/s10800-023-01999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01999-5

Keywords

Navigation