Skip to main content

Advertisement

Log in

Synthesis and characterization of CuO micro-flowers/PPy nanowires nanocomposites as high-capacity anode material for lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel set of CuO/PPy nanocomposites (NCs) with varying PPy weight ratios was synthesized via microwave irradiation and oxidative chemical polymerization. The resulting NCs and CuO micro-flowers were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy line, and dot mapping techniques. The formation mechanism of CuO micro-flowers and PPy nanowires were discussed in detail. The electrochemical lithium-ion storage properties of all samples, used as anode materials in Li-ion batteries, were measured. Our results indicate that PPy nanowires with various weight ratios play a critical role in the lithium storage properties of the hybrid CuO/PPy NCs. An increase in the nanowire mass ratio enhances the cyclic durability and charge/discharge capacities of the PPy/CuO NCs. Specifically, NCs containing 3.5-, 5-, 6.2-, and 8.8-wt% PPy nanowires exhibit reversible capacities of 128, 231, 371, and 200 mAh g−1, respectively. The superior performance of the hybrid CuO/PPy NCs is attributed to the PPy nanowires. The CuO/PPy NCs benefit from the nanowire morphology and composite structural features that can accommodate the dramatic volume expansion of CuO during discharge/charge steps and enhance electrical conductivity. Our study demonstrates that tuning the PPy nanowire mass ratio in hybrid Metal Oxide/Polymer NCs is an effective method to enhance the electrode performance of an energy storage device.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715

    Article  PubMed  CAS  Google Scholar 

  2. Espinoza VS, Erbis S, Pourzahedi L, Eckelman MJ, Isaacs JA (2014) Material flow analysis of carbon nanotube lithium-ion batteries used in portable computers. ACS Sustain Chem Eng 2(7):1642–1648

    Article  CAS  Google Scholar 

  3. Jin L, Qiu Y, Deng H, Li W, Li H, Yang S (2011) Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochim Acta 56(25):9127–9132

    Article  CAS  Google Scholar 

  4. Jiang Y, Jiang Z, Jiang Z, Liu M (2018) Phase and morphology evolution induced lithium storage capacity enhancement of porous CoO nanowires intertwined with reduced graphene oxide nanosheets. ChemElectroChem 5(23):3679–3687

    Article  CAS  Google Scholar 

  5. Zhang Q et al (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337

    Article  CAS  Google Scholar 

  6. Ding Y, Yang Y, Shao H (2012) Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics 217:27–33

    Article  CAS  Google Scholar 

  7. Hou Q et al (2019) Encapsulation of Fe2O3/NiO and Fe2O3/Co3O4 nanosheets into conductive polypyrrole for superior lithium ion storage. Electrochim Acta 296:438–449

    Article  CAS  Google Scholar 

  8. Cheng Y-W et al (2018) Freestanding three-dimensional CuO/NiO core–shell nanowire arrays as high-performance lithium-ion battery anode. Sci Rep 8(1):18034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang C, Xu J, Ma R, Yuen M-F (2014) Facile synthesis of CuO nanoneedle electrodes for high-performance lithium-ion batteries. Mater Chem Phys 148(1–2):411–415

    Article  CAS  Google Scholar 

  10. Pal J, Mondal C, Sasmal AK, Ganguly M, Negishi Y, Pal T (2014) Account of nitroarene reduction with size-and facet-controlled CuO–MnO2 nanocomposites. ACS Appl Mater Interfaces 6(12):9173–9184

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X et al (2018) Room-temperature vertically-aligned copper oxide nanoblades synthesized by electrochemical restructuring of copper hydroxide nanorods: an electrode for high energy density hybrid device. J Power Sour 383:124–132

    Article  CAS  Google Scholar 

  12. Chen Z et al (2019) Ultrafine CuO nanoparticles decorated activated tube-like carbon as advanced anode for lithium-ion batteries. Electrochim Acta 296:206–213

    Article  CAS  Google Scholar 

  13. Wang C et al (2014) Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl Mater Interfaces 6(2):1243–1250

    Article  PubMed  CAS  Google Scholar 

  14. Oh SW, Bang HJ, Bae YC, Sun Y-K (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sour 173(1):502–509

    Article  CAS  Google Scholar 

  15. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195(1):313–319

    Article  CAS  Google Scholar 

  16. Morales J, Sánchez L, Martín F, Ramos-Barrado JR, Sánchez M (2004) Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta 49(26):4589–4597

    Article  CAS  Google Scholar 

  17. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21(7):803–807

    Article  CAS  Google Scholar 

  18. Gao XP et al (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108(18):5547–5551

    Article  CAS  Google Scholar 

  19. Moakhar RS et al (2020) One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting. Appl Surf Sci 530:147271

    Article  Google Scholar 

  20. Huang XH, Tu JP, Xia XH, Wang XL, Xiang JY (2008) Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem Commun 10(9):1288–1290

    Article  CAS  Google Scholar 

  21. Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly (3, 4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4(7):4299–4307

    Article  PubMed  CAS  Google Scholar 

  22. Sun X, Zhang H, Zhou L, Huang X, Yu C (2016) Polypyrrole-coated zinc ferrite hollow spheres with improved cycling stability for lithium-ion batteries. Small 12(27):3732–3737

    Article  PubMed  CAS  Google Scholar 

  23. Wu L et al (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chemie 131(3):821–825

    Article  Google Scholar 

  24. Yin Z, Ding Y, Zheng Q, Guan L (2012) CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem Commun 20:40–43

    Article  CAS  Google Scholar 

  25. Yin Z, Fan W, Ding Y, Li J, Guan L, Zheng Q (2015) Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sustain Chem Eng 3(3):507–517

    Article  CAS  Google Scholar 

  26. Feng L et al (2020) Preparation of CuO@ PPy hybrid nanomaterials as high cyclic stability anode of lithium-ion battery. Micro Nano Lett 15(7):441–445

    Article  CAS  Google Scholar 

  27. Batool A, Kanwal F, Imran M, Jamil T, Siddiqi SA (2012) Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth Met 161(23–24):2753–2758

    Article  Google Scholar 

  28. Zhao J, Zhang S, Liu W, Du Z, Fang H (2014) Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433

    Article  CAS  Google Scholar 

  29. Zou G, Li H, Zhang D, Xiong K, Dong C, Qian Y (2006) Well-aligned arrays of CuO nanoplatelets. J Phys Chem B 110(4):1632–1637

    Article  PubMed  CAS  Google Scholar 

  30. Wang B, Wu X-L, Shu C-Y, Guo Y-G, Wang C-R (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20(47):10661–10664

    Article  CAS  Google Scholar 

  31. Zhou Y et al (2019) Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode. J Solid State Electrochem 23(6):1829–1836

    Article  CAS  Google Scholar 

  32. Cho G, Fung BM, Glatzhofer DT, Lee J-S, Shul Y-G (2001) Preparation and characterization of polypyrrole-coated nanosized novel ceramics. Langmuir 17(2):456–461

    Article  CAS  Google Scholar 

  33. Thommes M et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  34. Yang C, Xiao F, Wang J, Su X (2015) 3D flower-and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sensors Actuators B Chem 207:177–185

    Article  CAS  Google Scholar 

  35. Volanti DP et al (2008) Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloys Compd 459(1–2):537–542

    Article  CAS  Google Scholar 

  36. Yang G, Park S-J (2019) Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials (Basel) 12(7):1177

    Article  PubMed  CAS  Google Scholar 

  37. Rangel-Yagui CO, Pessoa-Jr A, Blankschtein D (2004) Two-phase aqueous micellar systems: an alternative method for protein purification. Brazilian J Chem Eng 21(4):531–544

    Article  CAS  Google Scholar 

  38. Dai T, Yang X, Lu Y (2006) Controlled growth of polypyrrole nanotubule/wire in the presence of a cationic surfactant. Nanotechnology 17(12):3028

    Article  CAS  Google Scholar 

  39. Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater 2(2):179–218

    Article  CAS  Google Scholar 

  40. Xiang JY, Tu JP, Zhang J, Zhong J, Zhang D, Cheng JP (2010) Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem Commun 12(8):1103–1107

    Article  CAS  Google Scholar 

  41. Vahdatkhah P, Sadrnezhaad SK, Voznyy O (2022) On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries. J Electroanal Chem 914:116317

    Article  CAS  Google Scholar 

  42. Park S-K, Choi JH, Kang YC (2018) Unique hollow NiO nanooctahedrons fabricated through the Kirkendall effect as anodes for enhanced lithium-ion storage. Chem Eng J 354:327–334

    Article  CAS  Google Scholar 

  43. Wang Y et al (2020) Cu/Cu2O@ Ppy nanowires as a long-life and high-capacity anode for lithium ion battery. Chem Eng J 391:123597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PV, SMHH, MH, SKS. Methodology: SMHH, MH. Formal analysis and investigation: MH. Writing—original draft preparation: MH. Writing—review, and editing: SKS, MH, PV. Resources: SKS. Supervision: SKS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helli, M., Sadrnezhaad, S.K., Hosseini-Hosseinabad, S.M. et al. Synthesis and characterization of CuO micro-flowers/PPy nanowires nanocomposites as high-capacity anode material for lithium-ion batteries. J Appl Electrochem 54, 1–11 (2024). https://doi.org/10.1007/s10800-023-01955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01955-3

Keywords

Navigation