Skip to main content
Log in

Electrochemical characterization of 3D N-rGO with cobalt phthalocyanine as redox mediator toward oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we present a study on the synthesis and electrochemical characterization of nitrogen-doped reduced graphene aerogel (NrGA) prepared through the hydrothermal reduction of graphene oxide (GO) suspension with urea as a nitrogen dopant source. Five samples (rGA, NrGA08, NrGA16, NrGA32, NrGA48) with varying concentrations of urea were prepared to investigate the effect of urea concentration on electrochemical performance. All samples were characterized using XRD, FT-IR, Raman, BET, FESEM, and XPS. The specific surface area of the samples ranged from 110 to 344 m2/g, with the highest value observed for NrGA48. Raman spectroscopy showed the generation of disorder in the structure with the insertion of nitrogen atoms. The electrochemical performance of the sample has been investigated through linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and RDE. The NrGA32 sample exhibited superior electrochemical performance compared to the other samples, and was therefore chosen as the optimized N-doped sample to investigate the effect of cobalt phthalocyanine (CoPC) as a redox mediator. The addition of CoPC significantly improved the electrochemical properties of NrGA32, increasing the electron transfer number from 3.5 to 3.85, enhancing the oxygen reduction current, and shifting the onset potential from 0.480 to 0.700 V vs. SHE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gómez-Marín A, Feliu J (2018) Oxygen reduction on platinum single crystal electrodes. Encyclopedia Interf Chem Surf Sci Electrochem. https://doi.org/10.1021/acscatal.8b03351

    Article  Google Scholar 

  2. Liang Y et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  CAS  PubMed  Google Scholar 

  3. Si F et al (2014) Electrochemical oxygen reduction reaction rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, Amsterdam, pp 133–170

    Book  Google Scholar 

  4. Ge X et al (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5(8):4643–4667

    Article  CAS  Google Scholar 

  5. Gong K et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  PubMed  Google Scholar 

  6. Dai L et al (2012) Carbon nanomaterials for advanced energy conversion and storage. small 8(8):1130–1166

    Article  CAS  PubMed  Google Scholar 

  7. Mungse HP et al (2014) Hydrothermal deoxygenation of graphene oxide in sub-and supercritical water. RSC Adv 4(43):22589–22595

    Article  CAS  Google Scholar 

  8. Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  CAS  PubMed  Google Scholar 

  9. Tao Y et al (2013) Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci Rep 3(1):1–8

    Article  Google Scholar 

  10. Liu J et al (2014) A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. J Mater Chem A 2(9):3031–3037

    Article  CAS  Google Scholar 

  11. Zhou Y et al (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21(13):2950–2956

    Article  CAS  Google Scholar 

  12. Chamoli P, Das MK, Kar KK (2017) Temperature dependence green reduction of graphene oxide by urea. Adv Mater Lett 8(3):217–222

    Article  CAS  Google Scholar 

  13. Hu H et al (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223

    Article  CAS  PubMed  Google Scholar 

  14. Sheng K-x et al (2011) High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater 26(1):9–15

    Article  CAS  Google Scholar 

  15. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855

    Article  CAS  Google Scholar 

  16. Yuan B et al (2016) Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 101:152–158

    Article  CAS  Google Scholar 

  17. Terrones M et al (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74(3):355–361

    Article  CAS  Google Scholar 

  18. Zhang G, Duan W, Gu B (2002) Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes. Appl Phys Lett 80(14):2589–2591

    Article  CAS  Google Scholar 

  19. Lai L et al (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942

    Article  CAS  Google Scholar 

  20. Chung JS, Kim EJ, Hur SH (2014) The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines. Chem Eng J 246:64–70

    Article  Google Scholar 

  21. Hagel P et al (1971) Cyanate formation in solutions of urea: I. Calculation of cyanate concentrations at different temperature and pH. Biochimica Biophysica Acta Protein Structure 243(3):366–373

    Article  CAS  Google Scholar 

  22. Shaw WH, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77(18):4729–4733

    Article  CAS  Google Scholar 

  23. Bull HB et al (1964) The pH of urea solutions. Arch Biochem Biophys 104(2):297–304

    Article  CAS  PubMed  Google Scholar 

  24. Sun L et al (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2(10):4498–4506

    Article  CAS  Google Scholar 

  25. Zhang Y, Su K, Li Z (2018) Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties. J Membr Sci 563:718–725

    Article  CAS  Google Scholar 

  26. Vollhardt KPC, Schore NE (2003) Organic chemistry: structure and function. Macmillan

  27. Li J et al (2016) Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ Sci 9(7):2418–2432

    Article  CAS  Google Scholar 

  28. Dodelet J-P (2006) Oxygen reduction in PEM fuel cell conditions: heat-treated non-precious metal-N 4 macrocycles and beyond N4-macrocyclic metal complexes  Springer, Berlin, pp 83–147

    Google Scholar 

  29. Zagal JH, Koper MT (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55(47):14510–14521

    Article  CAS  Google Scholar 

  30. Zagal JH et al (2012) Carbon nanotubes and metalloporphyrins and metallophthalocyanines-based materials for electroanalysis. J Porphyr Phthalocyanines 16(07n08):713–740

    Article  CAS  Google Scholar 

  31. Shojaeenezhad SS, Farbod M, Kazeminezhad I (2017) Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers’ method. J Science: Adv Mater Devices 2(4):470–475

    Google Scholar 

  32. Royer D (1961) Evidence for the existence of the permanganyl ion in sulphuric acid solutions of potassium permanganate. J Inorg Nucl Chem 17(1–2):159–167

    Article  CAS  Google Scholar 

  33. Kang JH et al (2016) Hidden second oxidation step of Hummers method. Chem Mater 28(3):756–764

    Article  CAS  Google Scholar 

  34. Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248–2255

    Article  CAS  Google Scholar 

  35. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068

    Article  CAS  PubMed  Google Scholar 

  36. Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    Article  CAS  Google Scholar 

  37. Pavia DL et al (2014) Introduction to spectroscopy. Cengage Learning

  38. Zheng X et al (2017) Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering. J Raman Spectrosc 48(1):97–103

    Article  CAS  Google Scholar 

  39. Hu X et al (2013) Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci 273:118–121

    Article  CAS  Google Scholar 

  40. Thommes M et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  41. Vasiliev VP et al (2022) A facile synthesis of Noble-Metal-Free Catalyst based on Nitrogen Doped Graphene Oxide for Oxygen reduction reaction. Materials 15(3):821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J et al (2016) Strain-induced electrostatic enhancements of BiFeO 3 nanowire loops. Phys Chem Chem Phys 18(33):22772–22777

    Article  CAS  PubMed  Google Scholar 

  43. Ahadi K, Mahdavi S-M, Nemati A (2013) Effect of chemical substitution on the morphology and optical properties of Bi1 – xCaxFeO3 films grown by pulsed-laser deposition. J Mater Sci: Mater Electron 24(1):248–252

    CAS  Google Scholar 

  44. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  45. Bie C et al (2021) Design, fabrication, and mechanism of nitrogen-doped graphene‐based photocatalyst. Adv Mater 33(9):2003521

    Article  CAS  Google Scholar 

  46. Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  CAS  PubMed  Google Scholar 

  47. Xu H, Ma L, Jin Z (2018) Nitrogen-doped graphene: synthesis, characterizations and energy applications. J energy Chem 27(1):146–160

    Article  Google Scholar 

  48. Akhavan O (2010) The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48(2):509–519

    Article  CAS  Google Scholar 

  49. Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications, vol 1. Springer

  50. Hwang JO et al (2012) Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano 6(1):159–167

    Article  CAS  PubMed  Google Scholar 

  51. Ouyang Z et al (2019) Preparation and specific capacitance properties of sulfur, nitrogen co-doped graphene quantum dots. Nanoscale Res Lett 14(1):1–9

    Article  CAS  Google Scholar 

  52. Ahadi K, Cadien K (2021) Hf1 – xZrxO2 and HfO2/ZrO2 gate dielectrics with extremely low density of interfacial defects using low temperature atomic layer deposition on GaN and InP. J Vacuum Sci Technol A: Vacuum Surf Films 39(3):032407

    Article  CAS  Google Scholar 

  53. Jin Z et al (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5):4112–4117

    Article  CAS  PubMed  Google Scholar 

  54. Kianinia M, Ahadi K, Nemati A (2011) Investigation of dark and light conductivities in calcium doped bismuth ferrite thin films. Mater Lett 65(19–20):3086–3088

    Article  CAS  Google Scholar 

  55. Al-Tawhid AH et al (2022) Oxygen Vacancy-Induced Anomalous Hall Effect in a nominally non-magnetic oxide. J Electron Mater 51(12):7073–7077

    Article  CAS  Google Scholar 

  56. Al-Tawhid AH et al (2022) Superconductivity and weak anti-localization at KTaO3 (111) interfaces. J Electron Mater. https://doi.org/10.1007/s11664-022-09844-9

    Article  Google Scholar 

  57. Schwaigert T et al (2023) Molecular beam epitaxy of KTaO3. J Vacuum Sci Technol A 41(2):022703

    Article  CAS  Google Scholar 

  58. Arnault EG et al (2023) Anisotropic superconductivity at KTaO3 (111) interfaces. Sci Adv 9(7):eadf1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Antić Ž et al (2017) Transparent and highly luminescent dysprosium-doped GdVO4 thin films fabricated by pulsed laser deposition. Thin Solid Films 638:332–337

    Article  Google Scholar 

  60. Al-Tawhid AH, Kumah DP, Ahadi K (2021) Two-dimensional electron systems and interfacial coupling in LaCrO3/KTaO3 heterostructures. Appl Phys Lett 118(19):192905

    Article  CAS  Google Scholar 

  61. Wang G et al (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simul 34(10–15):1051–1056

    Article  Google Scholar 

  62. Hu H et al (2016) Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@ Co 9 S 8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci 9(1):107–111

    Article  CAS  Google Scholar 

  63. Fernandes DM et al (2019) Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochim Acta 319:72–81

    Article  CAS  Google Scholar 

  64. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713

    Article  CAS  PubMed  Google Scholar 

  65. Xue Q et al (2018) 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon 139:137–144

    Article  CAS  Google Scholar 

  66. Wang Q, Hu W, Huang Y (2017) Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction. Int J Hydrog Energy 42(9):5899–5907

    Article  CAS  Google Scholar 

  67. Tian GL et al (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10(11):2251–2259

    Article  CAS  PubMed  Google Scholar 

  68. Yu D et al (2017) Nitrogen-doped graphene aerogels-supported cobaltosic oxide nanocrystals as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reactions. J Electroanal Chem 787:46–54

    Article  CAS  Google Scholar 

  69. Liu Y et al (2015) Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J Power Sources 299:492–500

    Article  CAS  Google Scholar 

  70. Shao Y et al (2019) Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction. Chemsuschem 12(10):2133–2146

    Article  CAS  PubMed  Google Scholar 

  71. Zhang C et al (2012) Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4(23):7326–7329

    Article  CAS  PubMed  Google Scholar 

  72. Gautam RK et al (2016) Nitrogen doped graphene supported α-MnO 2 nanorods for efficient ORR in a microbial fuel cell. RSC Adv 6(111):110091–110101

    Article  CAS  Google Scholar 

  73. Wu Z-S et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SA, and YG were the main authors of the manuscript and creators of the figures. All experiments were done by SA, and YG. The research conducted under supervision of  AD.

Corresponding author

Correspondence to Sina Ahadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2338.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadi, S., Ghorbani, Y. & Dolati, A. Electrochemical characterization of 3D N-rGO with cobalt phthalocyanine as redox mediator toward oxygen reduction reaction. J Appl Electrochem 53, 2197–2212 (2023). https://doi.org/10.1007/s10800-023-01918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01918-8

Keywords

Navigation