Skip to main content

Advertisement

Log in

Enhanced hydrogen production via methanolysis and energy storage on novel poplar sawdust-based biomass-derived activated carbon catalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The originality of our current work is based on the use of H3PO4 functionalized waste poplar sawdust as a supercapacitor electrode material and catalyst for NaBH4 methanolysis reaction. N2 adsorption–desorption, scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDX), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) are utilized for characterization of the activated carbon (AC). In the first stage of our study, the effect of H3PO4 ratios and carbonization temperature on the hydrogen generation rate (HGR) is investigated and optimized. The optimum H3PO4 and carbonization temperature for NaBH4 methanolysis on AC are determined as 4:1 and 600 °C, respectively. The optimum points for the methanol concentration, NaBH4 concentration, reaction temperature, and catalyst amount affecting the HGR values for the methanolysis reaction on the KV4-600 catalyst under these conditions are determined as 4 ml, 1.25 wt% NaBH4, 60 °C, and 50 mg, respectively. Moreover, the HGR, activation energy, and the reaction completion duration under optimized reaction conditions are obtained as 19,050.00 mL min−1 gcat−1, 11.76 kJ mol−1, and 60 s, respectively. The performance of the KV4-600 as a supercapacitor electrode material is evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The specific capacitance of the KV4-600 at a specific current of 0.25 A g−1 is found to be 161.15 F g−1. KV4-600 shows satisfactory results both as supercapacitor electrode material and as catalyst for NaBH4 methanolysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pontzer H (2021) Hotter and sicker: external energy expenditure and the tangled evolutionary roots of anthropogenic climate change and chronic disease. Am J Hum Biol 33(4):e23579

    PubMed  Google Scholar 

  2. Ariharan A, Ramesh K, Vinayagamoorthi R, Rani MS, Viswanathan B, Ramaprabhu S et al (2021) Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J Energy Storage 35:102185

    Google Scholar 

  3. Wang ML, Zhang S, Zhou ZH, Zhu JL, Gao JF, Dai K et al (2021) Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Composites B 224:109175

    CAS  Google Scholar 

  4. Lynch J, Garnett T (2021) Policy to reduce greenhouse gas emissions: is agricultural methane a special case? EuroChoices 20(2):11–17

    Google Scholar 

  5. Ge L, Wu YS, Wang F, Huang Y (2021) Algae-derived nitrogen self-doped porous carbon materials with high supercapacitor performances. Energy Fuels 35(18):15118–15125

    CAS  Google Scholar 

  6. Ariharan A, Kim SK (2021) Three-dimensional hierarchical porous carbons derived from Betelnut shells for supercapacitor electrodes. Materials 14(24):7793

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li C, Baek J-B (2021) The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 87:106162

    CAS  Google Scholar 

  8. Yan L, Hou J, Li T, Wang Y, Liu C, Zhou T et al (2021) Tremella-like integrated carbon nitride with polyvinylimine-doped for enhancing photocatalytic degradation and hydrogen evolution performances. Sep Purif Technol 279:119766

    CAS  Google Scholar 

  9. Avargani VM, Zendehboudi S, Saady NMC, Dusseault MB (2022) A comprehensive review on hydrogen production and utilization in North America: prospects and challenges. Energy Convers Manag 269:115927

    Google Scholar 

  10. Aziz M, Darmawan A, Juangsa FB (2021) Hydrogen production from biomasses and wastes: a technological review. Int J Hydrogen Energy 46(68):33756–33781

    CAS  Google Scholar 

  11. Keller M (2021) Comment on “Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy.” Ind Eng Chem Res 60(48):17792–17794

    CAS  Google Scholar 

  12. Qi M-Y, Conte M, Anpo M, Tang Z-R, Xu Y-J (2021) Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem Rev 121(21):13051–13085

    CAS  PubMed  Google Scholar 

  13. Koh J, Choi E, Sakaki K, Kim D, Han SM, Kim S et al (2021) Uncovering the encapsulation effect of reduced graphene oxide sheets on the hydrogen storage properties of palladium nanocubes. Nanoscale 13(40):16942–16951

    CAS  PubMed  Google Scholar 

  14. Wang X, Liao J, Li H, Wang H, Wang R, Pollet BG et al (2018) Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. Int J Hydrogen Energy 43(37):17543–17555

    CAS  Google Scholar 

  15. Narvariya R, Gupta S, Jain A, Rawal P, Gupta P, Panda TKJC (2022) One-pot reductive amination of aromatic aldehydes in [Et3NH][HSO4] using sodium borohydride and a mechanistic investigation using computational method. ChemistrySelect 7(4):e202200052

    CAS  Google Scholar 

  16. Wang Y, Shen J, Tian H, Liu X, Huang Y (2021) On-demand hydrogen evolution upon magnetic composite-nanocatalyzed sodium borohydride hydrolysis. J Mol Liq 338:116633

    CAS  Google Scholar 

  17. Karakaş DE, Akdemir M, Kaya M, Horoz S, Yaşar F (2022) The dual functionality of Zn@ BP catalyst: methanolysis and supercapatior. J Mater Sci 33:13484–13492

    Google Scholar 

  18. Zhou S, Yang Y, Zhang W, Rao X, Yan P, Isimjan TT et al (2021) Structure-regulated Ru particles decorated P-vacancy-rich CoP as a highly active and durable catalyst for NaBH4 hydrolysis. J Colloid Interface Sci 591:221–228

    CAS  PubMed  Google Scholar 

  19. Zhang X, Zhang Q, Xu B, Liu X, Zhang K, Fan G et al (2020) Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: positive roles of sulfur-containing salts. ACS Appl Mater Interfaces 12(8):9376–9386

    CAS  PubMed  Google Scholar 

  20. Wang F, Luo Y, Wang Y, Zhu H (2019) The preparation and performance of a novel spherical spider web-like structure RuNi/Ni foam catalyst for NaBH4 methanolysis. Int J Hydrogen Energy 44(26):13185–13194

    CAS  Google Scholar 

  21. Zhang H, Zhang L, Rodríguez-Pérez IA, Miao W, Chen K, Wang W et al (2021) Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Appl Surf Sci 540:148296

    CAS  Google Scholar 

  22. Dou S, Zhang W, Yang Y, Zhou S, Rao X, Yan P et al (2021) Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@NPC as high-efficiency catalyst for NaBH4 hydrolysis. Int J Hydrogen Energy 46(11):7772–7781

    CAS  Google Scholar 

  23. Yan K, Li Y, Zhang X, Yang X, Zhang N, Zheng J et al (2015) Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. Int J Hydrogen Energy 40(46):16137–16146

    CAS  Google Scholar 

  24. Shi L, Chen Z, Jian Z, Guo F, Gao C (2019) Carbon nanotubes-promoted Co–B catalysts for rapid hydrogen generation via NaBH4 hydrolysis. Int J Hydrogen Energy 44(36):19868–19877

    CAS  Google Scholar 

  25. Tiri RNE, Gulbagca F, Aygun A, Cherif A, Sen F (2022) Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environ Res 206:112622

    CAS  PubMed  Google Scholar 

  26. Wang F, Wang Y, Zhang Y, Luo Y, Zhu H (2018) Highly dispersed RuCo bimetallic nanoparticles supported on carbon black: enhanced catalytic activity for hydrogen generation from NaBH4 methanolysis. J Mater Sci 53(9):6831–6841

    CAS  Google Scholar 

  27. Zhu J, Li R, Niu W, Wu Y, Gou X (2013) Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. Int J Hydrogen Energy 38(25):10864–10870

    CAS  Google Scholar 

  28. Zhang J, Lin F, Yang L, He Z, Huang X, Zhang D et al (2020) Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chin Chem Lett 31(7):2019–2022

    CAS  Google Scholar 

  29. Saka C (2022) Phosphorus decorated g-C3N4-TiO2 particles as efficient metal-free catalysts for hydrogen release by NaBH4 methanolysis. Fuel 322:124196

    CAS  Google Scholar 

  30. Wei Y, Meng W, Wang Y, Gao Y, Qi K, Zhang K (2017) Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts. Int J Hydrogen Energy 42(9):6072–6079

    CAS  Google Scholar 

  31. Saka C (2021) Highly active and durable hydrogen release in NaBH4 methanolysis reaction with sulphur and phosphorus-doped metal-free microalgal carbon nanoparticles. Appl Catal B 292:120165

    CAS  Google Scholar 

  32. Saka C (2022) Phosphorus and sulphur-doped microalgae carbon as a highly active metal-free catalyst for efficient hydrogen release in NaBH4 methanolysis. Fuel 309:122183

    CAS  Google Scholar 

  33. Sahiner N (2017) Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4. J Power Sources 366:178–184

    CAS  Google Scholar 

  34. Sahiner N, Demirci S (2017) Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl Catal B 202:199–206

    CAS  Google Scholar 

  35. Sahiner N, Demirci S (2017) Very fast H2 production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. Int J Energy Res 41(5):736–746

    CAS  Google Scholar 

  36. Inger E, Sunol AK, Sahiner N (2020) Catalytic activity of metal-free amine-modified dextran microgels in hydrogen release through methanolysis of NaBH4. Int J Energy Res 44(7):5990–6001

    CAS  Google Scholar 

  37. Abebe MW, Baye AF, Kim H (2022) Poly (acrylic acid)/polysaccharides IPN derived metal free catalyst for rapid hydrogen generation via NaBH4 methanolysis. Int J Hydrogen Energy 47(75):32060–32070

    CAS  Google Scholar 

  38. Sahiner N, Yasar AO, Aktas N (2017) Metal-free pyridinium-based polymeric ionic liquids as catalyst for H2 generation from NaBH4. Renew Energy 101:1005–1012

    CAS  Google Scholar 

  39. Kaya M (2020) Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. Int J Hydrogen Energy 45(23):12731–12742

    CAS  Google Scholar 

  40. Elma KD (2022) A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of NaBH4. Int J Hydrogen Energy 47(24):12231–12239

    Google Scholar 

  41. Özarslan S, Raşit Atelge M, Kaya M, Ünalan S (2021) A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: a dual functional material. Fuel 305:121578

    Google Scholar 

  42. Lv J, Yin L, Chen X, Jeerapan I, Silva CA, Li Y et al (2021) Wearable biosupercapacitor: harvesting and storing energy from sweat. Adv Funct Mater 31(38):2102915

    CAS  Google Scholar 

  43. Arjunan A, Kim SK (2022) Bioinspired sustainable sheetlike porous carbon derived from Cassia fistula flower petal as an electrode for high-performance supercapacitors. Energy Fuels 36(16):9337–9346

    CAS  Google Scholar 

  44. Xu H, Shen MJIJER (2021) The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: a review. Int J Energy Res 45(15):20524–20544

    Google Scholar 

  45. Zou C, Zhang L, Hu X, Wang Z, Wik T, Pecht M (2018) A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J Power Sources 390:286–296

    CAS  Google Scholar 

  46. Gu H, Zhu YE, Yang J, Wei J, Zhou Z (2016) Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat 2(7):578–587

    CAS  Google Scholar 

  47. Saikia BK, Benoy SM, Bora M, Tamuly J, Pandey M, Bhattacharya D (2020) A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 282:118796

    CAS  Google Scholar 

  48. Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J et al (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52

    CAS  Google Scholar 

  49. Liu T, Zhang F, Song Y, Li YJJMCA (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem 5(34):17705–17733

    CAS  Google Scholar 

  50. Wang Y, Ding Y, Guo X, Yu G (2019) Conductive polymers for stretchable supercapacitors. Nano Res 12(9):1978–1987

    CAS  Google Scholar 

  51. Shayeh JS, Siadat SOR, Sadeghnia M, Niknam K, Rezaei M, Aghamohammadi N (2016) Advanced studies of coupled conductive polymer/metal oxide nano wire composite as an efficient supercapacitor by common and fast fourier electrochemical methods. J Mol Liq 220:489–494

    CAS  Google Scholar 

  52. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach DJJMCA (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem 5(25):12653–12672

    CAS  Google Scholar 

  53. Lu Y, Zhang S, Yin J, Bai C, Zhang J, Li Y et al (2017) Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 124:64–71

    CAS  Google Scholar 

  54. Konno K, Ohba Y, Onoe K, Yamaguchi T (2008) Preparation of activated carbon having the structure derived from biomass by alkali activation with NaOH, and its application for electric double-layer capacitor. Tanso 231:2–7

    CAS  Google Scholar 

  55. Adan-Mas A, Alcaraz L, Arévalo-Cid P, López-Gómez FA, Montemor F (2021) Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag 120:280–289

    CAS  PubMed  Google Scholar 

  56. Wang F, Zheng F, Jiang J, Li Y, Luo Y, Chen K et al (2021) Microwave-assisted preparation of hierarchical N and O co-doped corn-cob-derived activated carbon for a high-performance supercapacitor. Energy Fuels 35(9):8334–8344

    CAS  Google Scholar 

  57. Jakubec P, Bartusek S, Dvořáček JJ, Šedajová V, Kupka V, Otyepka M (2021) Flax-derived carbon: a highly durable electrode material for electrochemical double-layer supercapacitors. Nanomaterials 11(9):2229

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan Y, Liu P, Zhu B, Chen S, Yao K, Han RJIJHE (2015) Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int J Hydrog Energy 40(18):6188–6196

    CAS  Google Scholar 

  59. Lee K-C, Lim MSW, Hong Z-Y, Chong S, Tiong TJ, Pan G-T et al (2021) Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 14(15):4546

    CAS  Google Scholar 

  60. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z et al (2011) Preparation of capacitor’s electrode from sunflower seed shell. Biores Technol 102(2):1118–1123

    CAS  Google Scholar 

  61. Liu D, Zhang W, Huang WJCCL (2019) Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chin Chem Lett 30(6):1315–1319

    CAS  Google Scholar 

  62. Fan Y, Yang X, Zhu B, Liu P-F, Lu H-T (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sources 268:584–590

    CAS  Google Scholar 

  63. Misnon II, Zain NKM, Jose R (2019) Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste Biomass Valor 10(6):1731–1740

    CAS  Google Scholar 

  64. Chen J, Lin Y, Liu J, Wu D, Bai X, Chen D et al (2021) Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel. J Energy Storage 39:102640

    Google Scholar 

  65. Zhang L, Yao J, Zhang Y, Liao X, Chen F, Hu X (2015) Microstructural and morphological behaviors of asparagus lettuce cells subject to high pressure processing. Food Res Int 71:174–183

    Google Scholar 

  66. Chen H, Guo Y, Wang F, Wang G, Qi P, Guo X et al (2017) An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater 32(6):592–599

    CAS  Google Scholar 

  67. Yu K, Zhu H, Qi H, Liang C (2018) High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diam Relat Mater 88:18–22

    CAS  Google Scholar 

  68. Hu S-C, Cheng J, Wang W-P, Sun G-T, Hu L-L, Zhu M-Q et al (2021) Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications. Renew Energy 177:82–94

    CAS  Google Scholar 

  69. Luo F, Iradukunda Y, Yi K, Hu Y, Li X, Wang G et al (2021) Valorization of biomass waste from yellow horn (Xanthoceras sorbifolia) through the preparation of porous carbon for supercapacitors. Int J Electrochem Sci 16(210325):210325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK, CS, DY, SE, BU, ID: Writing—original draft, writing—review and editing. HK: Conseptualization and supervision.

Corresponding author

Correspondence to Sefika Kaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Saka, C., Yildiz, D. et al. Enhanced hydrogen production via methanolysis and energy storage on novel poplar sawdust-based biomass-derived activated carbon catalyst. J Appl Electrochem 53, 1643–1655 (2023). https://doi.org/10.1007/s10800-023-01873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01873-4

Keywords

Navigation