Skip to main content
Log in

Biochar from coffee husks: a green electrode modifier for sensitive determination of heavy metal ions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Biochar is a carbon rich and low-cost material that has been used as electrode modifier due to the property of preconcentrate spontaneously both organic and inorganic species. In this work, a biochar from coffee husks is proposed for the first time to prepare a carbon paste modified electrode (BC-CPE), which was used for the simultaneous determination of Cd2+ and Pb2+ by differential pulse adsorptive stripping voltammetry (DPAdsV) as proof-of-concept. Different BC-CPE were prepared, characterized (by EIS, FTIR, SEM and SEM–EDS) and submitted to DPAdsV measurements in the presence of both metal ions. Using the optimized BC-CPE (25 wt% of BC pyrolyzed at 300 °C during 50 min) and optimal pre-concentration conditions (10 min under stirring in a solution at pH 7.0), good linear range and LOD’s better than other BC-CPE from literature (1.7 and 0.2 µg L−1 for Cd2+ and Pb2+, respectively) were obtained, as well as stable responses (RSD < 4.5%; n = 5) and good inter-electrode reproducibility (RSD < 4.4%; n = 5). This optimized method was applied for the simultaneous determination of Pb2+ and Cd2+in water samples, being found good accuracy (recoveries between 81 and 122%). The good analytical features favor the determination of these and other heavy metal ions at trace levels using the proposed BC-CPE, due to the strong ion adsorption on biochar pyrolyzed from coffee processing residues, a novel eco-friendly, sustainable, and renewable biochar source.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suguihiro TM, de Oliveira PR, de Rezende EIP, Mangrich AS, Junior LHM, Bergamini MF (2013) An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresour Technol 143:40–45. https://doi.org/10.1016/j.biortech.2013.05.107

    Article  CAS  PubMed  Google Scholar 

  2. Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int. https://doi.org/10.1155/2014/640754

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borrill AJ, Reily NE, Macpherson J (2019) Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 144:6834–6849. https://doi.org/10.1039/c9an01437c

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, Tian L (2020) Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sens Actuators B. https://doi.org/10.1016/j.snb.2019.127590

    Article  Google Scholar 

  5. Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078

    Article  CAS  PubMed  Google Scholar 

  6. Kalinke C, Oliveira PR, Oliveira GA, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2017) Activated biochar: preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Anal Chim Acta 983:103–111. https://doi.org/10.1016/j.aca.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira PR, Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2018) Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 285:373–380. https://doi.org/10.1016/j.electacta.2018.08.004

    Article  CAS  Google Scholar 

  8. Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2016) Biochar prepared from castor oil cake at different temperatures: a voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J Hazard Mater 318:526–532. https://doi.org/10.1016/j.jhazmat.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  9. Sant’Anna MVS, Carvalho SWMM, Gevaerd A, Silva JOS, Santos E, Carregosa ISC, Wisniewski A, Marcolino-Junior LH, Bergamini MF, Sussuchi EM (2020) Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta. https://doi.org/10.1016/j.talanta.2020.121334

    Article  PubMed  Google Scholar 

  10. Kalinke C, de Oliveira PR, Emeterio MBS, González-Calabuig A, del Valle M, Mangrich AS, Junior LHM, Bergamini MF (2019) Voltammetric electronic tongue based on carbon paste electrodes modified with biochar for phenolic compounds stripping detection. Electroanalysis 31:2238–2245. https://doi.org/10.1002/elan.201900072

    Article  CAS  Google Scholar 

  11. Agustini D, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2015) Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar. Talanta. https://doi.org/10.1016/j.talanta.2015.04.052

    Article  PubMed  Google Scholar 

  12. de Oliveira PR, Kalinke C, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2017) The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem 799:602–608. https://doi.org/10.1016/j.jelechem.2017.06.020

    Article  CAS  Google Scholar 

  13. Stoytcheva M, Zlatev R, Velkova Z, Gochev V, Montero G, Valdez B, Curiel M (2021) Stripping voltammetric determination of methyl parathion at activated carbon nanopowder modified electrode. Electroanalysis 33:438–445. https://doi.org/10.1002/elan.202060212

    Article  CAS  Google Scholar 

  14. Faria JCT, de Pinto VM, Gonçalves DS, Souza DMSC, Fernandes SB, Brondani GE (2020) A compostagem da casca de café carbonizada favorece a produção de mudas de ingá. Nativa. https://doi.org/10.31413/nativa.v8i2.9119

  15. Kalinke C, de Oliveira PR, Bonacin JA, Janegitz BC, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2021) State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. Green Chem 23:5272–5308. https://doi.org/10.1039/d1gc00843a

    Article  CAS  Google Scholar 

  16. Li Y, Xu R, Wang H, Xu W, Tian L, Huang J, Liang C, Zhang Y (2022) Recent advances of biochar-based electrochemical sensors and biosensors. Biosensors (Basel). https://doi.org/10.3390/bios12060377

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tee JX, Selvarajoo A, Arumugasamy SK (2022) Prediction of carbon sequestration of biochar produced from biomass pyrolysis by artificial neural network. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107640

    Article  Google Scholar 

  18. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. https://doi.org/10.1111/gcbb.12018

    Article  CAS  Google Scholar 

  19. Wong A, Ferreira PA, Santos AM, Cincotto FH, Silva RAB, Sotomayor MDPT (2020) A new electrochemical sensor based on eco-friendly chemistry for the simultaneous determination of toxic trace elements. Microchem J. https://doi.org/10.1016/j.microc.2020.105292

    Article  Google Scholar 

  20. Oliveira GA, Gevaerd A, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2021) Biochar obtained from spent coffee grounds: evaluation of adsorption properties and its application in a voltammetric sensor for lead(II) ions. Microchem J. https://doi.org/10.1016/j.microc.2021.106114

    Article  Google Scholar 

  21. Kalinke C, de Oliveira PR, Mangrich AS, MarcolinoJunior LH, Bergamini MF (2020) Chemically-activated biochar from Ricinus communis L. cake and their potential applications for the voltammetric assessment of some relevant environmental pollutants. J Braz Chem Soc 31:941–952. https://doi.org/10.21577/0103-5053.20190259

    Article  CAS  Google Scholar 

  22. Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2016) Carbon paste electrode modified with biochar for sensitive electrochemical determination of paraquat. Electroanalysis. https://doi.org/10.1002/elan.201500640

    Article  Google Scholar 

  23. Silva MKL, Leão AL, Sain M, Cesarino I (2021) A functionalized renewable carbon-based surface for sensor development. J Solid State Electrochem. https://doi.org/10.1007/s10008-020-04882-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Volsi B, Telles TS, Caldarelli CE, da Camara MRG (2019) The dynamics of coffee production in Brazil. PLoS ONE. https://doi.org/10.1371/journal.pone.0219742

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arya SS, Venkatram R, More PR, Vijayan P (2022) The wastes of coffee bean processing for utilization in food: a review. J Food Sci Technol. https://doi.org/10.1007/s13197-021-05032-5

    Article  PubMed  Google Scholar 

  26. Klingel T, Kremer JI, Gottstein V, de Rezende TR, Schwarz S, Lachenmeier DW (2020) A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods. https://doi.org/10.3390/foods9050665

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kulandaivelu V, Bhat R (2012) Changes in the physico-chemical and biological quality attributes of soil following amendment with untreated coffee processing wastewater. Eur J Soil Biol. https://doi.org/10.1016/j.ejsobi.2011.11.011

    Article  Google Scholar 

  28. Kiggundu N, Sittamukyoto J (2019) Pryloysis of coffee husks for biochar production. J Environ Prot (Irvine, Calif). https://doi.org/10.4236/jep.2019.1012092

    Article  Google Scholar 

  29. Vu NT, Ngo TH, Nguyen TT, Do KU (2021) Performances of coffee husk biochar addition in a lab-scale SBR system for treating low carbon/nitrogen ratio wastewater. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01788-0

    Article  Google Scholar 

  30. Vu NT, Do KU (2021) Insights into adsorption of ammonium by biochar derived from low temperature pyrolysis of coffee husk. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01337-9

    Article  Google Scholar 

  31. Quyen V, Pham TH, Kim J, Thanh DM, Thang PQ, van Le Q, Jung SH, Kim TY (2021) Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131312

    Article  PubMed  Google Scholar 

  32. Guimarães T, de Oliveira AF, Lopes RP, de Carvalho AP, Teixeira, (2020) Biochars obtained from arabica coffee husks by a pyrolysis process: characterization and application in Fe(II) removal in aqueous systems. New J Chem. https://doi.org/10.1039/c9nj04144c

    Article  Google Scholar 

  33. Fernández Jv, Faria DN, Santoro MC, Mantovaneli R, Cipriano DF, Brito GM, Carneiro MTWD, Schettino MA, Gonzalez JL, Freitas JCC (2022) Use of unmodified coffee husk biochar and ashes as heterogeneous catalysts in biodiesel synthesis. BioEnergy Res. https://doi.org/10.1007/s12155-022-10516-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bergamini MF, Vital SI, Santos AL, Stradiotto NR (2006) Determinação de chumbo em álcool combustível por voltametria de redissolução anódica utilizando um eletrodo de pasta de carbono modificado com resina de troca iônica Amberlite IR 120. Eclética Química. https://doi.org/10.1590/S0100-46702006000200007

    Article  Google Scholar 

  35. Bekiaris G, Peltre C, Jensen LS, Bruun S (2016) Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochim Acta A 168:29–36. https://doi.org/10.1016/j.saa.2016.05.049

    Article  CAS  Google Scholar 

  36. Leifeld J (2006) Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur J Soil Sci 57:846–857. https://doi.org/10.1111/j.1365-2389.2005.00776.x

    Article  CAS  Google Scholar 

  37. Bardalai M, Mahanta DK (2018) Characterisation of biochar produced by pyrolysis from Areca catechu dust. Mater Today 5:2089–2097. https://doi.org/10.1016/j.matpr.2017.09.205

    Article  CAS  Google Scholar 

  38. Zoca SM, Penn CJ, Rosolem CA, Alves AR, Neto LO, Martins MM (2014) Coffee processing residues as a soil potassium amendment. Int J Recycl Org Waste Agric. https://doi.org/10.1007/s40093-014-0078-7

    Article  Google Scholar 

  39. Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferro-cyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem. https://doi.org/10.1021/ac50160a042

    Article  Google Scholar 

  40. Shukla SK, Lavon A, Shmulevich O, Ben-Yoav H (2018) The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference. Talanta. https://doi.org/10.1016/j.talanta.2017.12.081

    Article  PubMed  Google Scholar 

  41. Sayato Y (1989) WHO guidelines for drinking-water quality. Eisei Kagaku. https://doi.org/10.1248/jhs1956.35.307

    Article  Google Scholar 

  42. Xie R, Zhou L, Lan C, Fan F, Xie R, Tan H, Xie T, Zhao L (2018) Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry. R Soc Open Sci 5:180282. https://doi.org/10.1098/rsos.180282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201. https://doi.org/10.1016/j.aca.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  44. Guenang LS, Dongmo LM, Jiokeng SLZ, Kamdem AT, Doungmo G, Tonlé IK, Bassetto VC, Jović M, Lesch A, Girault H (2020) Montmorillonite clay-modified disposable ink-jet-printed graphene electrode as a sensitive voltammetric sensor for the determination of cadmium(II) and lead(II). SN Appl Sci. https://doi.org/10.1007/s42452-020-2283-5

    Article  Google Scholar 

  45. Palisoc ST, Estioko LCD, Natividad MT (2018) Voltammetric determination of lead and cadmium in vegetables by graphene paste electrode modified with activated carbon from coconut husk. Mater Res Express. https://doi.org/10.1088/2053-1591/aad43a

    Article  Google Scholar 

  46. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC. https://doi.org/10.1016/j.trac.2012.03.013

    Article  Google Scholar 

  47. van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem. https://doi.org/10.1186/1860-5397-2-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (Grant Number 420526/2018-8), CAPES and FAPEMIG (process APQ-03000-18) for the financial support and the Multiuser Laboratory of Chemistry Institute at the Federal University of Uberlândia (Brazil) for providing the equipment and technical support for FTIR, SEM and SEM–EDS measurements.

Author information

Authors and Affiliations

Authors

Contributions

FMO, MZMM prepared the electrodes, performed the electrochemical measurements and wrote the original article. BGL, JMP and VLC performed the electrode characterization and enriched the discussion of the manuscript (characterization and inclusion of greenness index). EIM and RABS synthesized the biochar samples, wrote the manuscript, prepared the figures, made a carefull review of manuscript, and raised funds for the research. All autors reviewed the manuscript.

Corresponding author

Correspondence to Edmar Isaias de Melo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6837 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, M.Z.M., de Oliveira, F.M., Petroni, J.M. et al. Biochar from coffee husks: a green electrode modifier for sensitive determination of heavy metal ions. J Appl Electrochem 53, 1461–1471 (2023). https://doi.org/10.1007/s10800-023-01853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01853-8

Keywords

Navigation