Skip to main content

Advertisement

Log in

A comparison study of the electrochemical polishing of laser powder bed fusion HR-2 stainless steel and AlSi10Mg

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2023

This article has been updated

Abstract

Electrochemical polishing (ECP) is effective for improving the surface quality of additively manufactured (AM) parts. However, ECP effects of AM parts manufactured from varied materials show significant differences owing to the complexity of phase composition, chemical composition, and specific surface defects. Accordingly, this paper compares the electrochemical polishing (ECP) results and mechanisms of the laser powder bed fusion (LPBF) additive manufacturing (AM) of HR-2 stainless steel (single-phase) and AlSi10Mg (multi-phase). Both kinds of LPBF parts show a significantly smoother surface after the ECP process. Following ECP, the Sa of HR-2 was reduced from 11.50 μm to 1.73 μm, while the Sa of AlSi10Mg was reduced from 14.91 μm to 4.70 μm. Notably, compared with LPBF HR-2, LPBF AlSi10Mg forms a solid viscous layer due to the buildup of polishing products after ECP, thus inhibiting the diffusion and reaction of the ions during the polishing process, resulting in a decrease in the polishing effect. Therefore, an in situ mechanical brushing (ECMP) targeting the product layer is conducted along with the ECP, and the surface roughness of the LPBF AlSi10Mg is further reduced to 2.19 μm. Due to the properties of the viscous layer, such an ECMP method is only suitable for the AlSi10Mg but not the HR-2 to further reduce the surface roughness as the ECMP LPBF HR-2 surface quality deteriorated from 1.73 to 2.51 μm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Wu MW, Chen JK, Chang PM, Ni K (2021) Compression deformation and fracture behaviors of laser powder bed fusion ti-6al-4v cellular solid during in situ tests. Mater Lett 303:130462. https://doi.org/10.1016/j.matlet.2021.130462

    Article  CAS  Google Scholar 

  2. Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9:274–288. https://doi.org/10.1108/13552540310502185

    Article  Google Scholar 

  3. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2:041304. https://doi.org/10.1063/1.4937809

    Article  CAS  Google Scholar 

  4. Kumar P (2021) Fracture toughness of 304l austenitic stainless steel produced by laser powder bed fusion. Scripta Mater 202:114002. https://doi.org/10.1016/j.scriptamat.2021.114002

    Article  CAS  Google Scholar 

  5. Jia Q, Rometsch P, Kürnsteiner P, Chao Q, Huang A, Weyland M et al (2019) Selective laser melting of a high strength al-mn-sc alloy: alloy design and strengthening mechanisms. Acta Mater 171:108–118. https://doi.org/10.1016/j.actamat.2019.04.014

    Article  CAS  Google Scholar 

  6. Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475. https://doi.org/10.1002/adem.201500419

    Article  CAS  Google Scholar 

  7. Prabha P, Filomena S, Sebastian P et al (2022) A study of the influence of novel scan strategies on residual stress and microstructure of L-shaped LPBF IN718 samples. Mater Des 214:110386. https://doi.org/10.1016/j.matdes.2022.110386

    Article  CAS  Google Scholar 

  8. Bi J, Lei Z, Chen Y, Chen X, Lu N, Tian Z et al (2021) An additively manufactured al-14.1 mg-0.47si-0.31sc-0.17zr alloy with high specific strength, good thermal stability and excellent corrosion resistance. J Mater Sci Technol 67:23–35. https://doi.org/10.1016/j.jmst.2020.06.036

    Article  CAS  Google Scholar 

  9. Za S, Mk M (2021) Recent advances in nanostructured SnLn mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram Int 47:23702–23724. https://doi.org/10.1016/j.ceramint.2021.05.155

    Article  CAS  Google Scholar 

  10. Za S, Sm M, Amiri O, Sn M, Kf L et al (2020) Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int 46:17186–17196. https://doi.org/10.1016/j.ceramint.2020.03.014

    Article  CAS  Google Scholar 

  11. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  CAS  Google Scholar 

  12. Mumtaz K, Hopkinson N (2009) Top surface and side roughness of inconel 625 parts processed using selective laser melting. Rapid Prototyp J 15:96–103. https://doi.org/10.1108/13552540910943397

    Article  Google Scholar 

  13. Meier C, Weissbach R, Weinberg J, Wall WA, Hart AJ (2018) Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J Mater Process Tech 266:484–501. https://doi.org/10.1016/j.jmatprotec.2018.10.037

    Article  CAS  Google Scholar 

  14. Han Q, Gu Y, Soe S, Lacan F, Setchi R (2019) Effect of hot cracking on the mechanical properties of hastelloy x superalloy fabricated by laser powder bed fusion additive manufacturing. Opt Laser Technol 124:105984. https://doi.org/10.1016/j.optlastec.2019.105984

    Article  CAS  Google Scholar 

  15. Todd I (2017) Metallurgy: no more tears for metal 3d printing. Nature 549:342–343. https://doi.org/10.1038/549342a

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Lu J, Luo Z, Wang D (2012) Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting. Rapid Prototyp J 18:482–489. https://doi.org/10.1108/13552541211272027

    Article  Google Scholar 

  17. Huttunen SE, Heino V, Vaajoki A, Hakala TJ, Ronkainen H (2019) Wear of additively manufactured tool steel in contact with aluminium alloy. Wear 432–433:202934. https://doi.org/10.1016/j.wear.2019.202934

    Article  CAS  Google Scholar 

  18. Uzan NE, Ramati S, Shneck R, Frage N, Yeheskel O (2018) On the effect of shot-peening on fatigue resistance of alsi10mg specimens fabricated by additive manufacturing using selective laser melting (am-slm). Addit Manuf 21:458–464. https://doi.org/10.1016/j.addma.2018.03.030

    Article  CAS  Google Scholar 

  19. Bhaduri D, Penchev P, Batal A, Dimov S, Soo SL, Sten S et al (2017) Laser polishing of 3d printed mesoscale components. Appl Surf Sci 405:29–46. https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  CAS  Google Scholar 

  20. Lee JY, Nagalingam AP, Yeo SH (2021) A review on the state-of-the-art of surface finishing processes and related iso/astm standards for metal additive manufactured components. Virtual Phys Prototy 16:68–96. https://doi.org/10.1080/17452759.2020.1830346

    Article  Google Scholar 

  21. Yczkowska WE, Pawe L, Nawrat G (2020) Electrochemical polishing of austenitic stainless steels. Materials 13:2557. https://doi.org/10.3390/ma13112557

    Article  CAS  Google Scholar 

  22. Dong G, Marleau FJ, Zhao YF (2019) Investigation of electrochemical post-processing procedure for ti-6al-4v lattice structure manufactured by direct metal laser sintering (dmls). Int J Adv Manuf Tech 104:3401–3417. https://doi.org/10.1007/s00170-019-03996-5

    Article  Google Scholar 

  23. Zhang B, Li XH, Bai J, Guo J, Pan W, Sun CN et al (2017) Study of selective laser melting (slm) inconel 718 part surface improvement by electrochemical polishing. Mater Des 116:531–537. https://doi.org/10.1016/j.matdes.2016.11.103

    Article  CAS  Google Scholar 

  24. Chang S, Liu A, Ong CYA, Zhang L, Huang X, Tan YH et al (2019) Highly effective smoothening of 3d-printed metal structures via overpotential electrochemical polishing. Mater Res Lett 7:282–289. https://doi.org/10.1080/21663831.2019.1601645

    Article  CAS  Google Scholar 

  25. Mingear J, Zhang B, Hartl D, Elwany A (2019) Effect of process parameters and electropolishing on the surface roughness of interior channels in additively manufactured nickel-titanium shape memory alloy actuators. Addit Manuf 27:565–575. https://doi.org/10.1016/j.addma.2019.03.027

    Article  CAS  Google Scholar 

  26. Kim US, Park JW (2019) High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. Int J Pr Eng Man-GT 6:11–21. https://doi.org/10.1007/s40684-019-00019-2

    Article  Google Scholar 

  27. Wen P, Qin Y, Chen Y, Voshage M, Jauer L, Poprawe R et al (2019) Laser additive manufacturing of zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol 35:368–376. https://doi.org/10.1016/j.jmst.2018.09.065

    Article  CAS  Google Scholar 

  28. Wang D, Yang Y, Yi Z, Su X (2013) Research on the fabricating quality optimization of the overhanging surface in slm process. Int J Adv Manuf Tech 65:1471–1484. https://doi.org/10.1007/s00170-012-4271-4

    Article  Google Scholar 

  29. Zhang Y, Li J, Che S et al (2020) Electrochemical Polishing of Additively Manufactured Ti–6Al–4V Alloy[J]. Met Mater Int 26:783–792. https://doi.org/10.1007/s12540-019-00556-0

    Article  CAS  Google Scholar 

  30. Tailor PB, Agrawal A, Joshi SS (2015) Numerical modeling of passive layer formation and stabilization in electrochemical polishing process. J Manuf Process 18:107–116. https://doi.org/10.1016/j.jmapro.2015.02.001

    Article  Google Scholar 

  31. Tyagi P, Goulet T, Riso C, Stephenson R et al (2019) Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf 25:32–38. https://doi.org/10.1016/j.addma.2018.11.001

    Article  CAS  Google Scholar 

  32. Bai Y, Zhao C, Yang J et al (2020) Dry mechanical-electrochemical polishing of selective laser melted 316l stainless steel. Mater Des 193:108840. https://doi.org/10.1016/j.matdes.2020.108840

    Article  CAS  Google Scholar 

  33. Kumar SA, Reddy SA, Mathias S, Shrivastava A, Raghupatruni P et al (2021) Investigation on pulsed electrolytically polished AlSi10Mg alloy processed via selective laser melting technique. P i mech eng l-j mat 12:1–13. https://doi.org/10.1177/14644207211045301

    Article  Google Scholar 

  34. Defanti S, Denti L, Vincenzi N, Gatto A (2020) Preliminary assessment of electro-chemical machining for aluminum parts produced by laser-based powder bed fusion. Smart Sustain Manuf 4:122–134. https://doi.org/10.1520/SSMS20200039

    Article  Google Scholar 

  35. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in alsi10mg parts processed by selective laser melting. Addit Manuf 1–4:77–86. https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  36. Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM (2016) Selective laser melting of alsi10mg: influence of post-processing on the microstructural and tensile properties development. Mater Des 105:212–222. https://doi.org/10.1016/j.matdes.2016.05.066

    Article  CAS  Google Scholar 

  37. Wang F, Zhang X, Deng H (2019) A comprehensive study on electrochemical polishing of tungsten. Appl Surf Sci 475:587–597. https://doi.org/10.1016/j.apsusc.2019.01.020

    Article  CAS  Google Scholar 

  38. Han W, Fang F (2019) Fundamental aspects and recent developments in electropolishing. Int J Mach Tool Manu 139:1–23. https://doi.org/10.1016/j.ijmachtools.2019.01.001

    Article  CAS  Google Scholar 

  39. Jacquet PA (1936) On the anodic behavior of copper in aqueous solutions of orthophosphoric acid. J Electrochem Soc 69:629. https://doi.org/10.1149/1.3498234

    Article  Google Scholar 

  40. Hryniewicz T, Rokosz K (2010) Analysis of xps results of aisi 316l ss electropolished and magnetoelectropolished at varying conditions. Surf Coat Tech 204:2583–2592. https://doi.org/10.1016/j.surfcoat.2010.02.005

    Article  CAS  Google Scholar 

  41. Abouelata A, Attia A, Youssef GI (2022) Electrochemical polishing versus mechanical polishing of aisi 304: surface and electrochemical study. J Solid State Electr 26:121–129. https://doi.org/10.1007/s10008-021-05037-2

    Article  CAS  Google Scholar 

  42. Habibzadeh S, Ling L, Shum TD, Davis EC, Omanovic S (2014) Electrochemical polishing as a 316l stainless steel surface treatment method: towards the improvement of biocompatibility. Corros Sci 87:89–100. https://doi.org/10.1016/j.corsci.2014.06.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No.52175444, 51905506), the Sichuan Science and Technology Program (2021JDJQ0014), the Innovation and Development Foundation of CAEP (CX20210006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minheng Ye or Chao Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The co-corresponding authorship for the author Minheng Ye is updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Liu, H., Ye, Z. et al. A comparison study of the electrochemical polishing of laser powder bed fusion HR-2 stainless steel and AlSi10Mg. J Appl Electrochem 53, 1157–1166 (2023). https://doi.org/10.1007/s10800-022-01843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01843-2

Keywords

Navigation