Skip to main content
Log in

Birnessite for supercapacitors: alkaline versus neutral electrolytes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Birnessite recharging processes in neutral (sodium sulfate) and alkaline (sodium hydroxide) solutions are compared. Birnessite is fabricated by cathodic deposition from alkaline permanganate bath on smooth carbon supports. The hypothesis is formulated and verified concerning the reason of much wider potential interval available for birnessite recharging in neutral solutions as compared to alkaline. Namely, an apparent width of this interval observed in neutral solutions is found to depend on birnessite loading and convection in solution. These observations can be explained by the changes of local pH in the course of recharging in neutral medium: seeming extension of the potential window results from the screened shift of the onset(s) of pH-dependent irreversible process(es). The effects of cathodic and anodic potential limits on birnessite recharging are addressed systematically. The total charges corresponding to reversible birnessite behavior in neutral (Na2SO4) and alkaline (NaOH) solutions are found to be very close, despite the potential interval is apparently wider for the former solution. The advantages and risks of recharging in neutral media are considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. All potentials reported below correspond to RHE if another reference is not indicated.

References

  1. Zhu S, Huo W, Liu X, Zhang Y (2020) Birnessite based nanostructures for supercapacitors. Nanoscale Adv 2:37–54. https://doi.org/10.1039/C9NA00547A

    Article  CAS  PubMed  Google Scholar 

  2. Sun S, Li J, Xu C, Zhai T, Xia H (2022) Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level. J Mater Chem A 10:19231–19253. https://doi.org/10.1039/D2TA02242G

    Article  CAS  Google Scholar 

  3. Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci 366:475–485. https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  CAS  Google Scholar 

  4. Ling FT, Post JE, Heaney PJ, Ilton ES (2018) The relationship between Mn oxidation state and structure in triclinic and hexagonal birnessites. Chem Geol 479:216–227. https://doi.org/10.1016/j.chemgeo.2018.01.011

    Article  CAS  Google Scholar 

  5. Jiang L, Dong M, Dou Y, Chen S, Liu P, Yin H, Zhao H (2020) Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes. J Mater Chem A 8:3746–3753. https://doi.org/10.1039/C9TA12297D

    Article  CAS  Google Scholar 

  6. Wei J, Nagarajan N, Zhitomirsky I (2007) Manganese oxide films for electrochemical supercapacitors. J Mater Process Technol 186:356–361. https://doi.org/10.1016/j.jmatprotec.2007.01.003

    Article  CAS  Google Scholar 

  7. Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem Solid-State Lett 8:A373–A377. https://doi.org/10.1149/1.1922869

    Article  CAS  Google Scholar 

  8. Pappu S, Rao TN, Martha SK, Bulusu SV (2022) Electrodeposited manganese oxide based redox mediator driven 2.2 V high energy density aqueous supercapacitor. Energy 243:122751. https://doi.org/10.1016/j.energy.2021.122751

    Article  CAS  Google Scholar 

  9. Zhao Y, Fang Q, Zhu X, Xue L, Ni M, Qiu C, Huang H, Sun S, Li S, Xia H (2020) Structure reinforced birnessite with an extended potential window for supercapacitors. J Mater Chem A 8:8969–8978. https://doi.org/10.1039/D0TA01480J

    Article  CAS  Google Scholar 

  10. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled Nanowall arrays. Adv Mater 29:1700804. https://doi.org/10.1002/adma.201700804

    Article  CAS  Google Scholar 

  11. Tanimoto T, Abe H, Tomono K, Nakayama M (2013) Cathodic synthesis of birnessite films for pseudocapacitor application. ECS Trans 50:61–70. https://doi.org/10.1149/05043.0061ecst

    Article  CAS  Google Scholar 

  12. Pugolovkin LV, Levin EE, Cherstiouk OV, Rudina NA, Tsirlina GA (2018) Fabrication and operation under the same conditions: oxygen reduction on electrodeposited manganese oxide. ECS Trans 85:137–145. https://doi.org/10.1149/08512.0137ecst

    Article  CAS  Google Scholar 

  13. Pugolovkin LV, Levin EE, Arkharova NA, Orekhov AS, Presnov DE, Tsirlina GA (2020) Cathodically deposited birnessite as the electrode material. ECS Trans 97:749–755. https://doi.org/10.1149/09707.0749ecst

    Article  CAS  Google Scholar 

  14. Pugolovkin LV, Levin EE, Arkharova NA, Orekhov AS, Urvanov SA, Mordkovich VZ, Tsirlina GA (2022) Cathodic deposition of manganese oxide for fabrication of hybrid recharging materials based on flexible CNT cloth. Electrochim Acta 412:140131. https://doi.org/10.1016/j.electacta.2022.140131

    Article  CAS  Google Scholar 

  15. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, pp 286–293

    Google Scholar 

  16. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Belanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180. https://doi.org/10.1149/1.2352197

    Article  CAS  Google Scholar 

  17. Della Noce R, Eugénio S, Silva TM, Carmezim MJ, Montemor MF (2017) Electrodeposition: a versatile, efficient, binder-free and room temperature one-step process to produce MnO2 electrochemical capacitor electrodes. RSC Adv 7:32038–32043. https://doi.org/10.1039/C7RA04481J

    Article  CAS  Google Scholar 

  18. Inoue R, Nakashima Y, Tomono K, Nakayama M (2012) Electrically rearranged birnessite-type MnO2 by repetitive potential steps and its pseudocapacitive properties. J Electrochem Soc 159:A445–A451. https://doi.org/10.1149/2.069204jes

    Article  CAS  Google Scholar 

  19. Pugolovkin LV, Levin EE, Arkharova NA, Orekhov AS, Presnov DE, Tsirlina GA (2020) Cathodic deposition of birnessite from alkaline permanganate solutions: tools to control the current efficiency, morphology and adhesion. J Electroanal Chem 874:114521. https://doi.org/10.1016/j.jelechem.2020.114521

    Article  CAS  Google Scholar 

  20. Ling FT, Heaney PJ, Post JE, Gao X (2015) Transformations from triclinic to hexagonal birnessite at circumneutral pH induced through pH control by common biological buffers. Chem Geol 416:1–10. https://doi.org/10.1016/j.chemgeo.2015.10.007

    Article  CAS  Google Scholar 

  21. Lefkowitz JP, Rouff AA, Elzinga EJ (2013) Influence of pH on the reductive transformation of birnessite by aqueous Mn(II). Environ Sci Technol 47:10364–10371. https://doi.org/10.1021/es402108d

    Article  CAS  PubMed  Google Scholar 

  22. Birkner N, Navrotsky A (2017) Thermodynamics of manganese oxides: sodium, potassium, and calcium birnessite and cryptomelane. Proc Nat Acad Sci USA 114:E1046-1053. https://doi.org/10.1073/pnas.1620427114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mateos M, Makivic N, Kim Y-S, Limoges B, Balland V (2020) Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv Energy Mater 10:2000332. https://doi.org/10.1002/aenm.202000332

    Article  CAS  Google Scholar 

  24. Larabi-Gruet N, Peulon S, Lacroix A, Chausse A (2008) Studies of electrodeposition from Mn(II) species of thin layers of birnessite onto transparent semiconductor. Electrochim Acta 53:7281–7287. https://doi.org/10.1016/j.electacta.2008.03.080

    Article  CAS  Google Scholar 

  25. Saeed S, Fortunato J, Ganeshan K, van Duin ACT, Augustyn V (2021) Decoupling proton and cation contributions to capacitive charge storage in birnessite in aqueous electrolytes. ChemElectroChem 8:4371–4379. https://doi.org/10.1002/celc.202100992

    Article  CAS  Google Scholar 

  26. Martinez MT, Lima AS, Bocchi N, Teixeira MFS (2009) Voltammetric performance and application of a sensor for sodium ions constructed with layered birnessite-type manganese oxide. Talanta 80:519–525. https://doi.org/10.1016/j.talanta.2009.07.015

    Article  CAS  PubMed  Google Scholar 

  27. Singh A, Sel O, Perrot H, Balland V, Limoges B, Laberty-Robert C (2021) Towards a high MnO2 loading and gravimetric capacity from proton-coupled Mn4+/Mn2+ reactions using a 3D free-standing conducting scaffold. J Mater Chem A 9:1500–1506. https://doi.org/10.1039/D0TA10685B

    Article  CAS  Google Scholar 

  28. Zhao H, Zhu M, Li W, Elzinga EJ, Villalobos M, Liu F, Zhang J, Feng X, Sparks DL (2016) Redox reactions between Mn(II) and hexagonal birnessite change its layer symmetry. Environ Sci Technol 50:1750–1758. https://doi.org/10.1021/acs.est.5b04436

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Zhang Y, Gu Q, Sheng A, Zhang B (2020) Tunable Mn oxidation state and redox potential of birnessite coexisting with aqueous Mn(II) in mildly acidic environments. Minerals 10:690. https://doi.org/10.3390/min10080690

    Article  CAS  Google Scholar 

  30. Boyd S, WY KT, Wu T, Saeed S, Jiang D, Balke N, van Duin ACT, Augustyn V (2021) Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat Mater 20:1689–1694. https://doi.org/10.1038/s41563-021-01066-4

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Chen Y, Dong Z, Wu X, Situ Y, Huang H (2019) Tuning Mn2+ additive in the aqueous electrolyte for enhanced cycling stability of birnessite electrodes. Electrochim Acta 298:678–684. https://doi.org/10.1016/j.electacta.2018.12.123

    Article  CAS  Google Scholar 

  32. Biswal A, Chandra Tripathy B, Sanjay K, Subbaiah T, Minakshi M (2015) Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry. RSC Adv 5:58255–58283. https://doi.org/10.1039/C5RA05892A

    Article  CAS  Google Scholar 

  33. Su Y, Zhitomirsky I (2014) Pulse electrosynthesis of MnO2 electrodes for supercapacitors. Adv Eng Mater 16:760–766. https://doi.org/10.1002/adem.201400077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by Russian Science Foundation, Project No 22-23-00467, https://rscf.ru/project/22-23-00467/.

Author information

Authors and Affiliations

Authors

Contributions

L.P. and G.Ts. worked on all the aspects of this manuscript together. L.P. was more concentrated on experiments, and G.Ts. was responsible for the text. Both authors contributed to the study conception and design. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Galina A. Tsirlina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugolovkin, L.V., Tsirlina, G.A. Birnessite for supercapacitors: alkaline versus neutral electrolytes. J Appl Electrochem 53, 909–918 (2023). https://doi.org/10.1007/s10800-022-01823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01823-6

Keywords

Navigation