Skip to main content

Advertisement

Log in

Incorporation of carbon nanotubes in sulfide-based binary composite to enhance the storage performance of supercapattery devices

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Supercapattery is a hybrid renewable device that stores a significant amount of energy and delivers sufficient power together. In this paper, we used the hydrothermal technique for the synthesis of nickel-manganese sulfide (NiMnS) and carbon nanotube (CNT)-incorporated nickel-manganese sulfide (NiMnS/CNT). The surface and structural analyses were done using SEM and XRD. In a three-cell arrangement, NiMNS delivered the specific capacity of 685 Cg−1 at the current density of 1.9 Ag−1. The incorporation of CNT into NiMnS significantly improves the storage capacity. The NiMnS75/CNT25 composite delivered the specific capacity of 1188 Cg−1 at the current density of 2.8 Ag−1. The supercapattery device was designed using NiMnS75/CNT25 as the anode while activated carbon as the cathode. The supercapattery (NiMnS75/CNT25//AC) demonstrates an outstanding specific capacity of 105.9 Cg−1 at the current density of 0.6 Ag−1. The device (NiMnS75/CNT25//AC) provided a high power density of 1600.8 WKg−1 at an energy density of 9 WhKg−1. These results suggest NiMnS75/CNT25 as a more suitable electrode material for supercapattery applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dubal DP et al (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47(6):2065–2129

    CAS  PubMed  Google Scholar 

  2. Browne MP, Sofer Z, Pumera M (2019) Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ Sci 12(1):41–58

    CAS  Google Scholar 

  3. Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192

    CAS  PubMed  Google Scholar 

  4. Niu Z et al (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25(7):1058–1064

    CAS  PubMed  Google Scholar 

  5. Xu J et al (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@ RuO2 nanosheet arrays on carbon cloth. ACS Nano 7(6):5453–5462

    CAS  PubMed  Google Scholar 

  6. Xie J et al (2013) Layer-by-layer β-Ni (OH) 2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2(1):65–74

    CAS  Google Scholar 

  7. Tang Y et al (2016) Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim Acta 190:118–125

    CAS  Google Scholar 

  8. Teng Z et al (2017) Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon 113:63–75

    CAS  Google Scholar 

  9. Zhao Q et al (2017) Facile synthesis of Mn 3 [Co (CN) 6] 2·nH2O nanocrystals for high-performance electrochemical energy storage devices. Inorg Chem Front 4(3):442–449

    CAS  Google Scholar 

  10. Surendran S et al (2018) Carbon-enriched cobalt phosphide with assorted nanostructure as a multifunctional electrode for energy conversion and storage devices. ChemistrySelect 3(43):12303–12313

    CAS  Google Scholar 

  11. Pervez SA et al (2015) Anodic WO3 mesosponge@ carbon: a novel binder-less electrode for advanced energy storage devices. ACS Appl Mater Interfaces 7(14):7635–7643

    CAS  PubMed  Google Scholar 

  12. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Nat Mater 11:172

    Google Scholar 

  13. Pervez SA et al (2019) Fabrication of a dendrite-free all solid-state li metal battery via polymer composite/garnet/polymer composite layered electrolyte. Adv Mater Interfaces 6(11):1900186

    Google Scholar 

  14. Zheng JP (2009) High energy density electrochemical capacitors without consumption of electrolyte. J Electrochem Soc 156(7):A500

    CAS  Google Scholar 

  15. Tan K et al (2012) Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem Mater 24(16):3153–3167

    CAS  Google Scholar 

  16. Shimizu W et al (2013) Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. J Power Sour 241:572–577

    CAS  Google Scholar 

  17. Iqbal MZ et al (2020) Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim Acta 346:136039

    CAS  Google Scholar 

  18. Kim H et al (2020) Fabrication of an ingenious metallic asymmetric supercapacitor by the integration of anodic iron oxide and cathodic nickel phosphide. Appl Surf Sci 511:145424

    CAS  Google Scholar 

  19. Chen J et al (2018) Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53:337–344

    CAS  Google Scholar 

  20. Balamurugan J et al (2017) Hierarchical design of Cu 1–x Ni x S nanosheets for high-performance asymmetric solid-state supercapacitors. J Mater Chem A 5(37):19760–19772

    CAS  Google Scholar 

  21. Priyadharsini N et al (2018) Effect of chelating agent on the sol–gel thermolysis synthesis of LiNiPO4 and its electrochemical properties for hybrid capacitors. J Phys Chem Solids 119:183–192

    CAS  Google Scholar 

  22. Lin L-Y et al (2019) Synthesizing Ni-based ternary metal compounds for battery-supercapacitor hybrid devices with and without using nickel precursors. Mater Sci Semicond Process 98:81–89

    CAS  Google Scholar 

  23. Sahoo S et al (2018) Incorporation of carbon quantum dots for improvement of supercapacitor performance of nickel sulfide. ACS Omega 3(12):17936–17946

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang Y, Chen T, Yu S (2015) Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances. Chem Commun 51(43):9018–9021

    CAS  Google Scholar 

  25. Lee H-W et al (2014) Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 5(1):1–6

    Google Scholar 

  26. Sakib MN et al (2021) A review of recent advances in manganese-based supercapacitors. J Energy Storage 44:103322

    Google Scholar 

  27. Cao J et al (2021) Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors. Chem Eng J 405:126928

    CAS  Google Scholar 

  28. Sim Y et al (2022) Fluorine-doped graphene oxide prepared by direct plasma treatment for supercapacitor application. Chem Eng J 428:132086

    CAS  Google Scholar 

  29. Xia C et al (2022) A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon Energy 4:491–505

    CAS  Google Scholar 

  30. Hu L et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106(51):21490–21494

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen W et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172

    CAS  PubMed  Google Scholar 

  32. Peng L et al (2015) Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367

    CAS  Google Scholar 

  33. Faisal MM et al (2022) Redox-active anomalous electrochemical performance of mesoporous nickel manganese sulfide nanomaterial as an anode material for supercapattery devices. Ceram Int 48(19):28565–28577

    CAS  Google Scholar 

  34. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5(6):2188–2196

    CAS  PubMed  Google Scholar 

  35. Omar FS et al (2017) Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim Acta 227:41–48

    CAS  Google Scholar 

  36. Iqbal MZ et al (2019) Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrason Sonochem 59:104736

    CAS  PubMed  Google Scholar 

  37. Onoda H, Sakumura T (2011) Synthesis and pigmental properties of nickel phosphates by the substitution with tetravalent cerium cation. Mater Sci Appl 2(11):1578–1583

    CAS  Google Scholar 

  38. Wang Y et al (2009) Sn@ CNT and Sn@ C@ CNT nanostructures for superior reversible lithium ion storage. Chem Mater 21(14):3210–3215

    CAS  Google Scholar 

  39. Frackowiak E et al (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423

    CAS  Google Scholar 

  40. Macdonald JR, Barsoukov E (2018) Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, New York

    Google Scholar 

  41. Niu C et al (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482

    CAS  Google Scholar 

  42. Duraisamy N et al (2015) Investigation on structural and electrochemical properties of binder free nanostructured nickel oxide thin film. Mater Lett 161:694–697

    CAS  Google Scholar 

  43. Zhao G et al (2020) High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J Colloid Interface Sci 572:151–159

    CAS  PubMed  Google Scholar 

  44. Jain R et al (2020) MnO2@ Polyaniline-CNT-boron-doped graphene as a freestanding binder-free electrode material for supercapacitor. J Mater Sci: Mater Electron 31(11):8385–8393

    CAS  Google Scholar 

  45. Wang J et al (2020) Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Compos B Eng 183:107663

    CAS  Google Scholar 

  46. Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16(2):024802

    PubMed  PubMed Central  Google Scholar 

  47. Gu J et al (2020) MOF-derived Ni-doped CoP@ C grown on CNTs for high-performance supercapacitors. Chem Eng J 385:123454

    CAS  Google Scholar 

  48. Hu Z et al (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7(10):1939–1953

    CAS  Google Scholar 

  49. Iqbal MF et al (2017) High specific capacitance and energy density of synthesized graphene oxide based hierarchical Al2S3 nanorambutan for supercapacitor applications. Electrochim Acta 246:1097–1103

    CAS  Google Scholar 

  50. Jia H et al (2019) Designing oxygen bonding between reduced graphene oxide and multishelled Mn3 O4 hollow spheres for enhanced performance of supercapacitors. J Mater Chem A 7(12):6686–6694

    CAS  Google Scholar 

  51. Farbod F et al (2019) Synthesis of a porous interconnected nitrogen-doped graphene aerogel matrix incorporated with ytterbium oxide nanoparticles and its application in superior symmetric supercapacitors. Electrochim Acta 306:480–488

    CAS  Google Scholar 

  52. Akinwolemiwa B, Peng C, Chen GZ (2015) Redox electrolytes in supercapacitors. J Electrochem Soc 162(5):A5054

    CAS  Google Scholar 

  53. Ghadimi LS et al (2018) Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor. Electrochim Acta 282:116–127

    Google Scholar 

  54. Halper, M. and J. Ellenbogen, Supercapacitors: A Brief Overview The MITRE Corporation, 2006, McLean Virginia

  55. Iqbal MZ et al (2020) Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J Energy Storage 27:101056

    Google Scholar 

  56. Chen K, Xue D (2017) Colloidal paradigm in supercapattery electrode systems. Nanotechnology 29(2):024003

    Google Scholar 

  57. Zhang Y et al (2019) Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem Eng J 375:121938

    CAS  Google Scholar 

  58. Manikandan R et al (2019) Self-coupled nickel sulfide@ nickel vanadium sulfide nanostructure as a novel high capacity electrode material for supercapattery. Appl Surf Sci 497:143778

    CAS  Google Scholar 

  59. Shahabuddin S et al (2019) Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram Int 45(9):11428–11437

    CAS  Google Scholar 

  60. Babu IM, William JJ, Muralidharan G (2019) Hierarchical β-Co (OH) 2/CoO nanosheets: an additive-free synthesis approach for supercapattery applications. Ionics 25(5):2437–2444

    CAS  Google Scholar 

  61. Numan A et al (2020) Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. J Alloy Compd 819:153019

    CAS  Google Scholar 

  62. Lee CC et al (2017) An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. J Solid State Electrochem 21(11):3205–3213

    CAS  Google Scholar 

  63. Ma L et al (2019) A 3D self-supported coralline-like CuCo2S4@ NiCo2S4 core–shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors. Nanotechnology 30(25):255603

    CAS  PubMed  Google Scholar 

  64. Iqbal J et al (2020) Ternary nanocomposite of cobalt oxide nanograins and silver nanoparticles grown on reduced graphene oxide conducting platform for high-performance supercapattery electrode material. J Alloy Compd 821:153452

    CAS  Google Scholar 

Download references

Acknowledgements

The Higher Education Commission (HEC) of Pakistan financed this research under the National Research Program for Universities (NRPU), project number HEC/R&D/NRPU/2017/7876. The authors would like to thank Riphah International University for sponsoring this research under the project number Riphah-ORIC-21-22/FEAS-04.

Author information

Authors and Affiliations

Authors

Contributions

MW, MHK, and AMA worked on experiment, data collection, analysis, and interpretation of the results. MWI, MHK, and AMA performed the calculation and wrote the manuscript. MWI, MHK, AMA, HH, HAA, and SA helped with the calculation process and reviewed the manuscript.

Corresponding author

Correspondence to Muhammad Waqas Iqbal.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Ethical approval

The submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.W., Khan, M.H., Afzal, A.M. et al. Incorporation of carbon nanotubes in sulfide-based binary composite to enhance the storage performance of supercapattery devices. J Appl Electrochem 53, 949–962 (2023). https://doi.org/10.1007/s10800-022-01820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01820-9

Keywords

Navigation