Skip to main content
Log in

Engineering concrete properties and behavior through electrodeposition: a review

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The rise of affordable and clean electricity is yielding a surge in the research and development of sustainable electrochemical approaches to engineer the properties and behavior of materials. In this context, engineering treatments that harness electrodeposition promise to enhance the properties, behavior, and durability of concrete via mineral crystal precipitations in the pores and cracks of such material. Highly complex and increasingly studied, the effects of electrodeposition in concrete seemingly lack a unified assessment at the time of writing. This review encompasses the effects of electrodeposition on the properties and behavior of concrete to facilitate future studies that can help develop such a promising engineering technique. Specifically, starting from an overview of the fundamentals governing the electrodeposition process, this work revises knowledge on its effects on concrete properties and behavior and discusses open questions whose answers can boost the development and application of this technique.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu J, Zhang M, Li G, Meng J, Leung CKY (2020) Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Constr Build Mater 239:117853. https://doi.org/10.1016/j.conbuildmat.2019.117853

    Article  CAS  Google Scholar 

  2. Susanto A, Koleva DA, Copuroglu O, van Beek K, van Breugel K (2013) Mechanical electrical and microstructural properties of cement-based materials in conditions of stray current flow. J Act ConcrTechnol 11:119–134. https://doi.org/10.3151/jact.11.119

    Article  CAS  Google Scholar 

  3. Rodrigues AS (2014) Deterior Concr 1:6

    Google Scholar 

  4. ASCE infrastructure report C, 2021 Report card for America’s infrastructure: a comprehensive assessmnet of America’s infrastructure. https://infrastructurereportcard.org/wp-content/uploads/2020/12/National_IRC_2021-report.pdf. Accessed 1 June 2021

  5. Ansari A, Siddiqui V, Khan I, Akram M, Siddiqui W, Khan A, Asiri AM (2019) Effect of self-healing on zeolite-immobilized bacterial cementitious mortar composites. Elsevier, Amsterdam, pp 239–257

    Google Scholar 

  6. Mosavat N, Oh E, Chai G (2012) A review of electrokinetic treatment technique for improving the engineering characteristics of low permeable problematic soils. Geomate 2:266–272. https://doi.org/10.21660/2012.4.3i

    Article  Google Scholar 

  7. Al-Saidy AH (2016) Performance of cement-based patch repair materials in plain and reinforced concrete members. Jou Eng Res 13:160. https://doi.org/10.24200/tjer.vol13iss2pp160-171

    Article  Google Scholar 

  8. Bertolini L (ed) (2004) Corrosion of steel in concrete: prevention, diagnosis, repair. Wiley-VCH, Weinheim

    Google Scholar 

  9. Christodoulou C, Glass G, Webb J, Austin S, Goodier C (2010) Assessing the long term benefits of impressed current cathodic protection. Corros Sci 52:2671–2679. https://doi.org/10.1016/j.corsci.2010.04.018

    Article  CAS  Google Scholar 

  10. Eldho CA, Jones S, Nanayakkara O, Xia J, (2016) Performance of concrete patch repairs: from a durability point of view. In: proceedings of the 5th international conference on the durability of concrete structures, Purdue University Press. https://doi.org/10.5703/1288284316112.

  11. von Fay KF, (2015) Guide to concrete repair, U.S. department of the interior bureau of reclamation.

  12. Grosse CU, Reinhardt H-W (eds) (2007) Advances in construction materials 2007: with 80 tables. Springer, Berlin

    Google Scholar 

  13. Jogiat M (2019) Evaluation of selected repari methods for chloride induced corrosion of steel in reinforced concrete railway bridges. University of the Witwatersrand, M.S.

    Google Scholar 

  14. Raupach M (2006) Patch repairs on reinforced concrete structures—model investigations on the required size and practical consequences. Cement Concr Compos 28:679–684. https://doi.org/10.1016/j.cemconcomp.2006.05.016

    Article  CAS  Google Scholar 

  15. Nounu G, Chaudhary Z-U-H (1999) Reinforced concrete repairs in beams. Constr Build Mater 13:195–212. https://doi.org/10.1016/S0950-0618(99)00014-8

    Article  Google Scholar 

  16. Sharif A, Das S (2011) Cathodic protection for reinforced concrete structures- a proven technique to stop corrosion. ATKINS 1:82–92

    Google Scholar 

  17. Kepler JL, Darwin D, Locke CE (2000) Evaluation OF corrosion protection methods for reinforced concrete highway structures. University of Kansas, USA

    Google Scholar 

  18. J.R. Mackechnie, M.G. Alexander, 2001 Repair principles for corrosion-damaged reinforced concrete structures., Department of civil engineering, University of Cape Town and the University of Witwatersrand, South Africa. http://www.comsiru.uct.ac.za/sites/default/files/image_tool/images/333/Research/Downloads/Mono_5_pdf.pdf Accessed 10 June 2021.

  19. Ress J, Martin U, Bosch J, Bastidas DM (2021) Protection of carbon steel rebars by epoxy coating with smart environmentally friendly microcapsules. Coatings 11:113. https://doi.org/10.3390/coatings11020113

    Article  CAS  Google Scholar 

  20. Zemajtis J, Weyers R (1996) Concrete bridge service life extension using sealers in chloride-laden environments. Transp Res Rec 1561(1):1–5

    Article  Google Scholar 

  21. Zhang W, Wang D, Han B (2020) Self-healing concrete-based composites. In: Khan A, Jawaid M, Raveendran SN, Ahmed Asiri AM (eds) Self healing composite materials. Woodhead Publishing, Sawston, pp 259–284

    Chapter  Google Scholar 

  22. Amran M, Onaizi AM, Fediuk R, Vatin NI, Muhammad Rashid RS, Abdelgader H, Ozbakkaloglu T (2022) Self-healing concrete as a prospective construction material: a review. Materials 15:3214. https://doi.org/10.3390/ma15093214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiu KN, Goodwin F, (2014) VISION 2020—BEFORE AND AFTER.

  24. Allanore A, (2012) Contribution of electricity to materials processing: historical and current perspectives, Prof. allanore via angie locknar. https://dspace.mit.edu/handle/1721.1/81408. Accessed 18 Mar 2021.

  25. Pierpont D, Nelson D, Goggins A, Posner D, (2019) CPI-Flexibility-the-path-to-low-carbon-low-cost-grids-April-2017.pdf, https://climatepolicyinitiative.org/wp-content/uploads/2017/04/CPI-Flexibility-the-path-to-low-carbon-low-cost-grids-April-2017.pdf. Accessed 18 Mar 2021

  26. Ellis LD, Badel AF, Chiang ML, Park RJ-Y, Chiang Y-M (2020) Toward electrochemical synthesis of cement—an electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. PNAS 117:12584–12591. https://doi.org/10.1073/pnas.1821673116

    Article  CAS  PubMed  Google Scholar 

  27. Araujo A, Panossian Z, Lourenço Z (2013) Proteção catódica de estruturas de concreto. Rev IBRACON Estrut Mater 6:178–193. https://doi.org/10.1590/S1983-41952013000200002

    Article  Google Scholar 

  28. Bennett JE, Bushman JB, Clear KC, Kamp RN, Swiat WJ, 1993 Cathodic protection of concrete bridges: a manual of practice, strategic highway research program. National Research Council, Washington, D.C. http://catalog.hathitrust.org/api/volumes/oclc/30888543.html Accessed 18 Mar 2021

  29. Chess PM, Broomfield JP, 2013 Broomfield, Cathodic Prevention and cathodic protection of steel in concrete and masonry. 2nd ed., CRC Press, Boca Raton, FL, USA. https://www.routledge.com/Cathodic-Protection-of-Steel-in-Concrete-and-Masonry/Chess-Broomfield/p/book/9781138076822 Accessed 2 June 2021

  30. Cheung MMS, Cao C (2013) Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures. Constr Build Mater 45:199–207. https://doi.org/10.1016/j.conbuildmat.2013.04.010

    Article  Google Scholar 

  31. Polder RB (1998) Cathodic protection of reinforced-concrete structures in The Netherlands–experience and developments. HERON 43:3–14

    Google Scholar 

  32. Wyatt BS, Irvine DJ (1986) Cathodic protection of reinforced concrete. UK Corrosion 2:17–38

    Google Scholar 

  33. Andrade C, Castellote M, Sarría J, Alonso C (1999) Evolution of pore solution chemistry, electro-osmosis and rebar corrosion rate induced by realkalisation. Mat Struct 32:427–436. https://doi.org/10.1007/BF02482714

    Article  CAS  Google Scholar 

  34. Bastidas DM, Cobo A, Otero E, González JA (2008) Electrochemical rehabilitation methods for reinforced concrete structures: advantages and pitfalls. Corros Eng, Sci Technol 43:248–255. https://doi.org/10.1179/174327808X272423

    Article  CAS  Google Scholar 

  35. Castellote M, Llorente I, Andrade C, Turrillas X, Alonso C, Campo J (2006) In-situ monitoring the realkalisation process by neutron diffraction: electroosmotic flux and portlandite formation. Cem Concr Res 36:791–800. https://doi.org/10.1016/j.cemconres.2005.11.014

    Article  CAS  Google Scholar 

  36. González F, Fajardo G, Arliguie G, Juárez CA, Escadeillas G (2011) Electrochemical realkalisation of carbonated concrete: an alternative approach to prevention of reinforcing steel corrosion. Int J Electrochem Sci 6:18

    Article  Google Scholar 

  37. Redaelli E, Bertolini L (2011) Electrochemical repair techniques in carbonated concrete Part I: electrochemical realkalisation. J Appl Electrochem 41:817–827. https://doi.org/10.1007/s10800-011-0301-4

    Article  CAS  Google Scholar 

  38. Ribeiro PHLC, Meira GR, Ferreira PRR, Perazzo N (2013) Electrochemical realkalisation of carbonated concretes—influence of material characteristics and thickness of concrete reinforcement cover. Constr Build Mater 40:280–290. https://doi.org/10.1016/j.conbuildmat.2012.09.076

    Article  Google Scholar 

  39. Yeih W, Chang JJ (2005) A study on the efficiency of electrochemical realkalisation of carbonated concrete. Constr Build Mater 19:516–524. https://doi.org/10.1016/j.conbuildmat.2005.01.006

    Article  Google Scholar 

  40. Abdelaziz GE, Abdelalim AMK, Fawzy YA (2009) Evaluation of the short and long-term efficiencies of electro-chemical chloride extraction. Cem Concr Res 39:727–732. https://doi.org/10.1016/j.cemconres.2009.05.015

    Article  CAS  Google Scholar 

  41. Luan R, de Almeida Souza MHF, de Medeiros E, Pereira APBC (2017) Electrochemical chloride extraction: efficiency and impact on concrete containing 1% of NaCl. Constr Build Mater 145:435–444. https://doi.org/10.1016/j.conbuildmat.2017.04.010

    Article  CAS  Google Scholar 

  42. Ihekwaba NM, Hope BB, Hansson CM (1996) Carbonation and electrochemical chloride extraction from concrete. Cem Concr Res 26:1095–1107. https://doi.org/10.1016/0008-8846(96)00076-2

    Article  CAS  Google Scholar 

  43. Saito H, Deguchi A (2000) Leaching tests on different mortars using accelerated electrochemical method. Cem Concr Res 30:1815–1825. https://doi.org/10.1016/S0008-8846(00)00377-X

    Article  CAS  Google Scholar 

  44. Shan H, Xu J, Wang Z, Jiang L, Xu N (2016) Electrochemical chloride removal in reinforced concrete structures: improvement of effectiveness by simultaneous migration of silicate ion. Constr Build Mater 127:344–352. https://doi.org/10.1016/j.conbuildmat.2016.09.137

    Article  CAS  Google Scholar 

  45. Siegwart M, Lyness JF, McFarland BJ, Doyle G (2005) The effect of electrochemical chloride extraction on pre-stressed concrete. Constr Build Mater 19:585–594. https://doi.org/10.1016/j.conbuildmat.2005.01.012

    Article  Google Scholar 

  46. Yen NTH, Yokota H, (2015) Hashimoto K, Alteration of cement hydration products due to application of electrochemical chloride extraction. In: Whistler, Canada. p. 15

  47. Chu H, Jiang L, Song Z, Xu Y, Zhao S, Xiong C (2017) Repair of concrete crack by pulse electro-deposition technique. Constr Build Mater 148:241–248. https://doi.org/10.1016/j.conbuildmat.2017.05.033

    Article  Google Scholar 

  48. Chang J-J, Yeih W, Hsu H-M, Huang N-M (2009) Performance evaluation of using electrochemical deposition as a repair method for reinforced concrete beams. Tech Science Press 1:75–93

    Google Scholar 

  49. Otsuki N, Hisada M, Ryu J-S, Banshoya E (1999) Rehabilitation of concrete cracks by electrodeposition. Concr Int: Desgin Prac 21:58–63

    CAS  Google Scholar 

  50. Otsuki N, Ryu J-S (2001) Use of electrodeposition for repair of concrete with shrinkage cracks. J Mater Civ Eng 13:136–142. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:2(136)

    Article  CAS  Google Scholar 

  51. Ryou JS, Otsuki N (2005) Experimental study on repair of concrete structural members by electrochemical method. Scripta Mater 52:1123–1127. https://doi.org/10.1016/j.scriptamat.2005.02.001

    Article  CAS  Google Scholar 

  52. Ryu J-S, Otsuki N, Hisada M (1999) Crack closure and chloride extraction in concrete by electrodepositon method. IASMiRT, Seoul

    Google Scholar 

  53. Ryu J-S, Otsuki N (2002) Crack closure of reinforced concrete by electrodeposition technique. Cem Concr Res 32:159–164. https://doi.org/10.1016/S0008-8846(01)00650-0

    Article  CAS  Google Scholar 

  54. Mietz J (1995) Electrochemical realkalisation for rehabilitation of reinforced concrete structures. Mater Corros 46:527–533. https://doi.org/10.1002/maco.19950460904

    Article  CAS  Google Scholar 

  55. Cardenas HE (2002) Cardenas_UIUC pdf. University of Illinois, Champaign

    Google Scholar 

  56. Mithra R, Selvaraj R, Suganya O (2017) Electro-kinetic technique for enhamcing durability of concrete. Int J Civ Eng Technol (IJCIET) 8:801–808

    Google Scholar 

  57. Jönsson B, Nonat A, Labbez C, Cabane B, Wennerström H (2005) Controlling the cohesion of cement paste. Langmuir 21:9211–9221. https://doi.org/10.1021/la051048z

    Article  CAS  PubMed  Google Scholar 

  58. DePaoli DW, Harris MT, Ally MR (1996). Test Eval Electrokinet Decontam Concr. https://doi.org/10.2172/383590

    Article  Google Scholar 

  59. Jönsson B, Wennerström H, Nonat A, Cabane B (2004) Onset of cohesion in cement paste. Langmuir 20:6702–6709. https://doi.org/10.1021/la0498760

    Article  CAS  PubMed  Google Scholar 

  60. Labbez C, Jo B, Pochard I, Nonat A, Cabane B (2006) Surface charge density and electrokinetic potential of highly charged minerals: experiments and monte carlo simulations on calcium silicate hydrate. J Phys Chem B 110:9219–9230

    Article  CAS  PubMed  Google Scholar 

  61. Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21:7263–7270. https://doi.org/10.1021/la050440+

    Article  CAS  PubMed  Google Scholar 

  62. Wittmann FH, Hollenz C (1974) On the significance of electroosmosis in hardened cement paste. Cem Concr Res 4:389–397. https://doi.org/10.1016/0008-8846(74)90104-5

    Article  Google Scholar 

  63. Nachbaur L, Nkinamubanzi P-C, Nonat A, Mutin J-C (1998) Electrokinetic properties which control the coagulation of silicate cement suspensions during early age hydration. J Colloid Interface Sci 202:261–268. https://doi.org/10.1006/jcis.1998.5445

    Article  CAS  Google Scholar 

  64. Viallis-Terrisse H, Nonat A, Petit J-C (2001) Zeta-potential study of calcium silicate hydrates interacting with alkaline cations. J Colloid Interface Sci 244:58–65. https://doi.org/10.1006/jcis.2001.7897

    Article  CAS  Google Scholar 

  65. Banfill PFG (1994) Features of the mechanism of electrolytic re-alkalisation and desalination treatments for reinforced concrete, corrosion and corrosion protection of steel in concrete. Sheffield Academic Press, Sheffield, pp 1489–1498

    Google Scholar 

  66. Claisse PPA, (2013) Transport properties of concrete: measurement and applications.

  67. DePaoli DW, Harris MT, Morgan IL, Ally MR (1997) Investigation of electrokinetic decontamination of concrete. Sep Sci Technol 32:387–404. https://doi.org/10.1080/01496399708003205

    Article  CAS  Google Scholar 

  68. Xie X, (2019) Louisiana tech university, Ph.D. thesis, Louisiana technological university.

  69. Stokes RH, Robinson RA (1960) Electrolyte solutions—the measurement and interpretation of conductance, chemical potential and diffusion in solutions of simple electrolytes. Butterworths Sci Publ Lond 72:426–426. https://doi.org/10.1002/ange.19600721222

    Article  Google Scholar 

  70. Samson E, Marchand J, Snyder KA (2003) Calculation of ionic diffusion coefficients on the basis of migration test results. Mat Struct 36:156–165. https://doi.org/10.1007/BF02479554

    Article  CAS  Google Scholar 

  71. Kim G-N, Choi W-K, Lee K-W (2010) Decontamination of radioactive concrete using electrokinetic technology. J Appl Electrochem 40:1209–1216

    Article  CAS  Google Scholar 

  72. Parker AJ, Joyce MJ, Boxall C (2017) Remediation of 137Cs contaminated concrete using electrokinetic phenomena and ionic salt washes in nuclear energy contexts. J Hazard Mater 340:454–462. https://doi.org/10.1016/j.jhazmat.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  73. Tardu SF (2004) The electric double layer effect on the microchannel flow stability and heat transfer. Superlattices Microstruct 35:513–529. https://doi.org/10.1016/j.spmi.2004.02.024

    Article  CAS  Google Scholar 

  74. Sze A, Erickson D, Ren L, Li D (2003) Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci 261:402–410. https://doi.org/10.1016/S0021-9797(03)00142-5

    Article  CAS  PubMed  Google Scholar 

  75. Asadi A, Huat BBK, Nahazanan H, Keykhah HA (2013) Theory of electroosmosis in soil. Int J Electrochem Sci 8:1016–1025

    Article  CAS  Google Scholar 

  76. Skibsted G, (2013) Matrix changes and side effects induced by electrokinetic treatment of porous and particulate materials. Ph.D. thesis, department of civil engineering,Technical University of Denmark.

  77. Shapiro AP, (1990) Electroosmotic purging of contaminants from saturated soils. Ph.D. Thesis, Massachusetts Institute of Technology. https://dspace.mit.edu/bitstream/handle/1721.1/13674/24309035-MIT.pdf?sequence=2 Accessed 25 Mar, 2021

  78. Chu H, Liang Y, Guo M-Z, Zhu Z, Zhao S, Song Z, Wang L, Jiang L (2020) Effect of electro-deposition on repair of cracks in reinforced concrete. Constr Build Mater 238:117725. https://doi.org/10.1016/j.conbuildmat.2019.117725

    Article  CAS  Google Scholar 

  79. Nishida T, Otsuki N, Saito A, (2014) Development of improved electrodeposition method for repair of reinforced concrete structures. In: proceedings of the 4th international conference on the durability of concrete structures, purdue university libraries scholarly publishing services. pp. 393–402 https://doi.org/10.5703/1288284315428.

  80. Yeih W, Hsu H-M, Chang J-J, Hung C-C, Huang R (2010) A study on repairing internal defects inside concrete using the electrochemical deposition method. J Mar Sci Technol 18:6

    Article  Google Scholar 

  81. Ryu J-S (2001) An experimental study on the repair of concrete crack by electrochemical technique. Mater Struct 34:433–437

    Article  CAS  Google Scholar 

  82. Ryu J-S, Otsuki N (2002) Application of electrochemical techniques for the control of cracks and steel corrosion in concrete. J Appl Electrochem 32:635–639

    Article  CAS  Google Scholar 

  83. Ryou JS, Monteiro P (2004) Electrodeposition as a rehabilitation method for concrete materials. Can J Civ Eng 31:776–781. https://doi.org/10.1139/l04-044

    Article  CAS  Google Scholar 

  84. Song H-W, Lee C-H, Lee KC, Saraswathy V (2008) Rehabilitation of reinforced concrete by electro deposition and physiochemical process—a review. Zastita Mater 49:1–8

    CAS  Google Scholar 

  85. Jiang Z, Xing F, Sun Z, Wang P (2008) Healing effectiveness of cracks rehabilitation in reinforced concrete using electrodeposition method. J. Wuhan Univ Technol.-Mat Sci Edit 23:917–922. https://doi.org/10.1007/s11595-007-6917-x

    Article  CAS  Google Scholar 

  86. Yodsudjai W, Suwanvittaya P (2011) Experimental study on application of electrode position method for decreasing carbonation and chloride penetration of cracked reinforced concrete, Asian. J Civ Eng 12:197–204

    Google Scholar 

  87. Chu H, Wang P (2011) Influence of additives on the formation of electrodeposits in the concrete cracks. J Wuhan Univ Technol-Mat Sci Edit 26:366–370. https://doi.org/10.1007/s11595-011-0231-3

    Article  CAS  Google Scholar 

  88. Chu H, Jiang L, Xu N, Xiong C (2012) Influence of anion types on the electrodeposition healing effect of concrete cracks. J Wuhan Univ Technol-Mat Sci Edit 27:1154–1159. https://doi.org/10.1007/s11595-012-0621-1

    Article  CAS  Google Scholar 

  89. Chu H, Jiang L, Xiong C, You L, Xu N (2014) Use of electrochemical method for repair of concrete cracks. Constr Build Mater 73:58–66. https://doi.org/10.1016/j.conbuildmat.2014.09.031

    Article  Google Scholar 

  90. A. Susanto, D.A. Koleva, K. van Breugel, DC (2014) current-induced curing and ageing phenomena in cement-based materials, in: Delft, The Netherlands: pp. 1–8.

  91. Xu J, Feng W, Shan H, Jiang L, Tang L (2015) Application of electrodeposition method in upgrading mortar durability. ACT 13:367–372. https://doi.org/10.3151/jact.13.367

    Article  CAS  Google Scholar 

  92. Yang Q (2019) EFFECT OF graphene and carbon fiber on repairing crack of concrete by electrodeposition. Ceramics–Silikaty 63(4):403–412

    Article  CAS  Google Scholar 

  93. Chen Q, Xie L, Huang A, Li B, Sun Y, Jiang Z, Li W, Zhu H (2022) Healing of concrete cracks by in-situ synthesis of ettringite induced by electric field. Constr Build Mater 352:128685. https://doi.org/10.1016/j.conbuildmat.2022.128685

    Article  CAS  Google Scholar 

  94. Matsubara H, Kamimura K (2022) Use of electrodeposition to realise the crack-healing and pore-filling of weathered rock: a small specimen case. Soils Found 62:101100. https://doi.org/10.1016/j.sandf.2021.101100

    Article  Google Scholar 

  95. Siegwart M, Lyness JF, McFarland BJ (2003) Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions. Cem Concr Res 33:1211–1221. https://doi.org/10.1016/S0008-8846(03)00047-4

    Article  CAS  Google Scholar 

  96. Galan I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44:3181–3186. https://doi.org/10.1021/es903581d

    Article  CAS  PubMed  Google Scholar 

  97. Kim J-K, Yee J-J, Kee S-H (2021) Electrochemical deposition treatment (EDT) as a comprehensive rehabilitation method for corrosion-induced deterioration in concrete with various severity levels. Sensors 21:6287. https://doi.org/10.3390/s21186287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ismail M, Yahaya N (2001) A review on effects of using electrochemical extraction technique in corrosion treatment of reinforced concrete, malaysian. J Civ Eng 13:1–10

    CAS  Google Scholar 

  99. Sun W, Jayaraman S, Chen W, Persson KA, Ceder G (2015) Nucleation of metastable aragonite CaCO3 in seawater. PNAS 112:3199–3204. https://doi.org/10.1073/pnas.1423898112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun W, Dacek ST, Ong SP, Hautier G, Jain A, Richards WD, Gamst AC, Persson KA, Ceder G (2016) The thermodynamic scale of inorganic crystalline metastability. Sci Adv. https://doi.org/10.1126/sciadv.1600225

    Article  PubMed  PubMed Central  Google Scholar 

  101. Evans JS (2017) Polymorphs Proteins, and nucleation theory: a critical analysis. Minerals 7:62. https://doi.org/10.3390/min7040062

    Article  CAS  Google Scholar 

  102. Lassin A, André L, Devau N, Lach A, Beuvier T, Gibaud A, Gaboreau S, Azaroual M (2018) Dynamics of calcium carbonate formation: geochemical modeling of a two-step mechanism. Geochim Cosmochim Acta 240:236–254. https://doi.org/10.1016/j.gca.2018.08.033

    Article  CAS  Google Scholar 

  103. Yan Z, Chen Q, Zhu H, Woody Ju J, Zhou S, Jiang Z (2013) A multi-phase micromechanical model for unsaturated concrete repaired using the electrochemical deposition method. Int J Solids Struct 50:3875–3885. https://doi.org/10.1016/j.ijsolstr.2013.07.020

    Article  Google Scholar 

  104. Chen Q, Jiang Z, Yang Z, Zhu H, Ju JW, Yan Z, Wang Y (2016) Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Mater Struct 49:5183–5193. https://doi.org/10.1617/s11527-016-0853-1

    Article  Google Scholar 

  105. Zhu H, Chen Q, Yan Z, Ju JW, Zhou S (2014) Micromechanical models for saturated concrete repaired by the electrochemical deposition method. Mater Struct 47:1067–1082. https://doi.org/10.1617/s11527-013-0115-4

    Article  CAS  Google Scholar 

  106. Chen Q, Jiang Z, Zhu H, Ju JW, Yan Z (2017) Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects. Int J Damage Mech 26:210–228. https://doi.org/10.1177/1056789516672163

    Article  CAS  Google Scholar 

  107. Chen Q, Jiang Z, Yang Z, Zhu H, Ju JW, Yan Z, Wang Y (2017) Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method. Acta Mech 228:415–431

    Article  Google Scholar 

  108. Chen Q, Jiang Z, Zhu H, Ju J, Yan Z, Li H, Rabczuk T (2018) A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method with the bonding effects. Int J Damage Mech 27:1307–1324. https://doi.org/10.1177/1056789518773633

    Article  CAS  Google Scholar 

  109. Chen Q, Zhu H, Ju JW, Yan Z, Jiang Z, Chen B, Wang Y, Fan Z (2020) Stochastic micromechanical predictions for the probabilistic behavior of saturated concrete repaired by the electrochemical deposition method. Int J Damage Mech 29:435–453. https://doi.org/10.1177/1056789519860805

    Article  CAS  Google Scholar 

  110. Zhou Y, Liu W, Chen Q, Li H, Zhu H, Ju J (2020) Multiphysics coupling model for the crack repairing process using electrochemical deposition. Constr Build Mater 264:120625. https://doi.org/10.1016/j.conbuildmat.2020.120625

    Article  CAS  Google Scholar 

  111. Meng Z, Liu Q, She W, Cai Y, Yang J, Farjad Iqbal M (2021) Electrochemical deposition method for load-induced crack repair of reinforced concrete structures: a numerical study. Eng Struct 246:112903. https://doi.org/10.1016/j.engstruct.2021.112903

    Article  Google Scholar 

  112. Zhu H, Chen Q, Ju JW, Yan Z, Jiang Z (2021) Electrochemical deposition induced continuum damage-healing framework for the cementitious composite. Int J Damage Mech 30:945–963. https://doi.org/10.1177/1056789521991871

    Article  CAS  Google Scholar 

  113. Masami A, Tsutomu F, Masaru Y, Harutosi S (1991) Applicability electrodeposition as a repairing method for deteriorated marine concrete structures. Port ahd Harbor Research Institute, Yokosuka

    Google Scholar 

  114. Goreau TJ, Trench RK (2019) Innovative methods of marine ecosystem restoration. CRC Press, Boca Raton

    Google Scholar 

  115. Kaneko Y, Mikami T, Hiwatari Y, Ohara K (2005) Computer simulation of electrodeposition: hybrid of molecular dynamics and Monte Carlo. Mol Simul 31:429–433. https://doi.org/10.1080/08927020412331332758

    Article  CAS  Google Scholar 

  116. Su Y-Z, Fu Y-C, Wei Y-M, Yan J-W, Mao B-W (2010) The electrode/ionic liquid interface: electric double layer and metal electrodeposition. ChemPhysChem 11:2764–2778. https://doi.org/10.1002/cphc.201000278

    Article  CAS  PubMed  Google Scholar 

  117. Dalili N, Clark MP, Davari E, Ivey DG (2016) Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography. J Power Sources 328:318–328. https://doi.org/10.1016/j.jpowsour.2016.08.012

    Article  CAS  Google Scholar 

  118. Ustarroz J, Geboes B, Vanrompay H, Sentosun K, Bals S, Breugelmans T, Hubin A (2017) Electrodeposition of highly porous Pt nanoparticles studied by quantitative 3D electron tomography: influence of growth mechanisms and potential cycling on the active surface area. ACS Appl Mater Interfaces 9:16168–16177. https://doi.org/10.1021/acsami.7b01619

    Article  CAS  PubMed  Google Scholar 

  119. Saneiyan S, Ntarlagiannis D, Ohan J, Lee J, Colwell F, Burns S (2019) Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes. Ecol Eng 127:36–47. https://doi.org/10.1016/j.ecoleng.2018.11.010

    Article  Google Scholar 

  120. Saneiyan S, Ntarlagiannis D, Colwell F (2021) Complex conductivity signatures of microbial induced calcite precipitation, field and laboratory scales. Geophys J Int 224:1811–1824. https://doi.org/10.1093/gji/ggaa510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CEMEX Innovation Holding Ltd, which is thankfully acknowledged.

Funding

CEMEX Innovation Holding Ltd,-, Alessandro F. Rotta Loria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro F. Rotta Loria.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotta Loria, A.F., Shirole, D., Volpatti, G. et al. Engineering concrete properties and behavior through electrodeposition: a review. J Appl Electrochem 53, 193–215 (2023). https://doi.org/10.1007/s10800-022-01770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01770-2

Keywords

Navigation