Skip to main content

Advertisement

Log in

Integrated Electro-photo-Fenton process and visible light-driven TiO2/rGO/Fe2O3 photocatalyst based on graphite cathode in the presence of iron anode for Metronidazole degradation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A visible light-mediated degradation of metronidazole (MNZ) was performed via Electro-photo-Fenton (EPF) with \({\mathrm{TiO}}_{2}\)/reduced graphene oxide (5 wt%)/\({\mathrm{Fe}}_{2}{\mathrm{O}}_{3}\) (4 wt%) photocatalysts deposited onto graphite cathodes. The synthesized photocatalyst was immobilized by the dip-coating method. The central composite design was used to examine the effect of current density, irradiation time, pH, contaminant concentration, and catalyst concentration. The optimal conditions for MNZ degradation were obtained at a concentration of 25 \({\mathrm{mg L}}^{-1}\) via EPF method with a reaction time of 100 mins, pH of 4.6, and current density of 2.5 \({\mathrm{mA cm}}^{-2}\). The amount of catalyst used under such conditions was 0.2 \({\mathrm{mg L}}^{-1}\). The results of the characterization analysis based on Fourier-transform infrared spectroscopy, photoluminescence, X-ray diffraction, Ultraviolet–visible diffuse reflection spectroscopy, Field emission scanning electron microscopy, X-ray fluorescence, Energy-dispersive X-ray spectroscopy, and Brunauer–Emmett–Teller confirmed that the photocatalyst was synthesized and deposited on graphite cathode uniformly. Experimental data revealed that the removal of MNZ by suspended photocatalysts, Electro-Fenton, and Electro-photo-Fenton yielded 56.9%, 61.4%, and 82%, respectively. In this study, a combined EPF with suspended photocatalyst yielded a 90.8% removal efficiency of MNZ. With a modified cathode in the EPF process, the removal efficiency and mineralization were achieved within 100 mins as 96.7% and 88.5%, respectively. There was adequate stability after repeating the experiment five times with the same modified cathode at the optimum point in the integrated experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nidheesh P, Scaria J, Babu DS, Kumar MS (2020) An overview on combined electrocoagulation/degradation processes for the effective treatment of water and wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127907

    Article  PubMed  Google Scholar 

  2. Poza-Nogueiras V, Rosales E, Pazos M, Sanroman MA (2018) Current advances and trends in electro-Fenton process using heterogeneous catalysts–a review. Chemosphere 201:399–416. https://doi.org/10.1016/j.chemosphere.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  3. Zhang M-H, Dong H, Zhao L, Wang D-X, Meng D (2019) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180

    Article  CAS  PubMed  Google Scholar 

  4. Hajiali M, Farhadian M, Tangestaninejad S (2022) Enhance performance ZnO/Bi2MoO6/MIL-101 (Fe) grown on fluorine-doped tin oxide as photoanode and CuO/Cu2O based on Cu mesh photocathode in the photocatalytic fuel cell. Energy Convers Manage 269:116137. https://doi.org/10.1016/j.enconman.2022.116137

    Article  CAS  Google Scholar 

  5. Kubo D, Kawase Y (2018) Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode. J Clean Prod 203:685–695. https://doi.org/10.1016/j.jclepro.2018.08.231

    Article  CAS  Google Scholar 

  6. Brillas E (2020) A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250:126198. https://doi.org/10.1016/j.chemosphere.2020.126198

    Article  CAS  PubMed  Google Scholar 

  7. Aflaki S, Farhadian M, Nazar ARS, Tangestaninejad S, Davari N (2021) Investigation of copper plates as anode and /glycine/Zn stabilized on graphite as cathode for textile dyes degradation from aqueous solution under visible light. J Appl Electrochem. https://doi.org/10.1007/s10800-021-01580-y

    Article  Google Scholar 

  8. Chen S, Tang L, Feng H, Zhou Y, Zeng G, Lu Y, Yu J, Ren X, Peng B, Liu X (2019) Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Sci Total Environ 670:921–931. https://doi.org/10.1016/j.scitotenv.2019.03.086

    Article  CAS  PubMed  Google Scholar 

  9. Zhai L-F, Sun Y-M, Guo H-Y, Sun M (2019) Surface modification of graphite support as an effective strategy to enhance the electro-fenton activity of Fe3O4/graphite composites in situ fabricated from acid mine drainage using an air-cathode fuel Cell. ACS Sustainable Chem Eng 7(9):8367–8374. https://doi.org/10.1021/acssuschemeng.9b00008

    Article  CAS  Google Scholar 

  10. Ganiyu SO, Zhou M, Martínez-Huitle CA (2018) Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl Catal B 235:103–129. https://doi.org/10.1016/j.apcatb.2018.04.044

    Article  CAS  Google Scholar 

  11. Ou B, Wang J, Wu Y, Zhao S, Wang Z (2019) Treatment of polyaniline wastewater by coupling of photoelectro-Fenton and heterogeneous photocatalysis with black TiO2 nanotubes. ACS Omega 4(6):9664–9672. https://doi.org/10.1021/acsomega.9b00352

    Article  CAS  Google Scholar 

  12. Miron SM, Brendlé J, Josien L, Fourcade F, Rojas F, Amrane A, Limousy L (2019) Development of a new cathode for the electro-Fenton process combining carbon felt and iron-containing organic–inorganic hybrids. C R Chim 22(2–3):238–249. https://doi.org/10.1016/j.crci.2018.11.012

    Article  CAS  Google Scholar 

  13. Yang W, Zhou M, Oturan N, Li Y, Oturan MA (2019) Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochim Acta 305:285–294. https://doi.org/10.1016/j.electacta.2019.03.067

    Article  CAS  Google Scholar 

  14. Akerdi AG, Es’haghzade Z, Bahrami S, Arami M (2017) Comparative study of GO and reduced GO coated graphite electrodes for decolorization of acidic and basic dyes from aqueous solutions through heterogeneous electro-Fenton process. J Environ Chem Eng 5(3):2313–2324. https://doi.org/10.1016/j.jece.2017.04.028

    Article  CAS  Google Scholar 

  15. Rahmani AR, Nematollahi D, Samarghandi MR, Samadi MT, Azarian G (2018) A combined advanced oxidation process: electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. J Electroanal Chem 808:82–89. https://doi.org/10.1016/j.jelechem.2017.11.067

    Article  CAS  Google Scholar 

  16. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew Sustain Energy Rev 76:1393–1421. https://doi.org/10.1016/j.rser.2017.01.130

    Article  CAS  Google Scholar 

  17. Zhang J-J, Qi P, Li J, Zheng X-C, Liu P, Guan X-X, Zheng G-P (2018) Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J Ind Eng Chem 61:407–415. https://doi.org/10.1016/j.jiec.2017.12.040

    Article  CAS  Google Scholar 

  18. Lin L, Wang H, Xu P (2017) Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem Eng J 310:389–398. https://doi.org/10.1016/j.cej.2016.04.024

    Article  CAS  Google Scholar 

  19. Sumi V, Meera M, Sha MA, Shibli S (2020) Effect of rGO on Fe2O3–TiO2 composite incorporated NiP coating for boosting hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy 45(4):2460–2477. https://doi.org/10.1016/j.ijhydene.2019.11.167

    Article  CAS  Google Scholar 

  20. Kovačić M, Perović K, Papac J, Tomić A, Matoh L, Žener B, Brodar T, Capan I, Surca AK, Kušić H (2020) One-pot synthesis of sulfur-doped TiO2/reduced graphene oxide composite (S-TiO2/rGO) with improved photocatalytic activity for the removal of diclofenac from water. Materials 13(7):1621. https://doi.org/10.3390/ma13071621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma B, Yu N, Xin S, Xin Y, Zhang C, Ma X, Gao M (2021) Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation. Chemosphere 267:129242. https://doi.org/10.1016/j.chemosphere.2020.129242

    Article  CAS  PubMed  Google Scholar 

  22. Ismail MA, Hedhili MN, Anjum DH, Singaravelu V, Chung SH (2021) Synthesis and characterization of iron-doped TiO2 nanoparticles using ferrocene from flame spray pyrolysis. Catalysts 11(4):438. https://doi.org/10.3390/catal11040438

    Article  CAS  Google Scholar 

  23. Wang F, Yu X, Ge M, Wu S (2020) One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin. Chem Eng J 384:123381. https://doi.org/10.1016/j.cej.2019.123381

    Article  CAS  Google Scholar 

  24. Naknikham U, Boffa V, Magnacca G, Qiao A, Jensen LR, Yue Y (2017) Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approach. RSC Adv 7(65):41217–41227. https://doi.org/10.1039/C7RA07472G

    Article  CAS  Google Scholar 

  25. Wang X, Wang A, Lu M, Ma J (2018) Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J 337:372–384. https://doi.org/10.1016/j.cej.2017.12.090

    Article  CAS  Google Scholar 

  26. Fakhravar S, Farhadian M, Tangestaninejad S (2020) Excellent performance of a novel dual Z-scheme Cu2 S/Ag2 S/BiV O4 heterostructure in metronidazole degradation in batch and continuous systems: immobilization of catalytic particles on α-Al2O3 fiber. Appl Surf Sci 505:144599. https://doi.org/10.1016/j.apsusc.2019.144599

    Article  CAS  Google Scholar 

  27. Leili M, Khorram NS, Godini K, Azarian G, Moussavi R, Peykhoshian A (2020) Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process. J Mol Liq 313:113556. https://doi.org/10.1016/j.molliq.2020.113556

    Article  CAS  Google Scholar 

  28. Anjali R, Shanthakumar S (2019) Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J Environ Manage 246:51–62. https://doi.org/10.1016/j.jenvman.2019.05.090

    Article  CAS  PubMed  Google Scholar 

  29. Hena S, Gutierrez L, Croué J-P (2020) Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124041

    Article  PubMed  Google Scholar 

  30. Wang D, Luo H, Liu L, Wei W, Li L (2019) Adsorption characteristics and degradation mechanism of metronidazole on the surface of photocatalyst TiO2: a theoretical study. Appl Surf Sci 478:896–905. https://doi.org/10.1016/j.apsusc.2019.02.052

    Article  CAS  Google Scholar 

  31. Aboudalle A, Fourcade F, Assadi AA, Domergue L, Djelal H, Lendormi T, Taha S, Amrane A (2018) Reactive oxygen and iron species monitoring to investigate the electro-Fenton performances. Impact of the electrochemical process on the biodegradability of metronidazole and its by-products. Chemosphere 199:486–494. https://doi.org/10.1016/j.chemosphere.2018.02.075

    Article  CAS  PubMed  Google Scholar 

  32. Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564. https://doi.org/10.1016/j.apsusc.2018.08.133

    Article  CAS  Google Scholar 

  33. Prabhakarrao N, Chandra MR, Rao TS (2017) Synthesis of Zr doped TiO2/reduced Graphene Oxide (rGO) nanocomposite material for efficient photocatalytic degradation of Eosin Blue dye under visible light irradiation. J Alloy Compd 694:596–606. https://doi.org/10.1016/j.jallcom.2016.09.329

    Article  CAS  Google Scholar 

  34. Sun B, Skyllas-Kazacos M (1992) Modification of graphite electrode materials for vanadium redox flow battery application—I thermal treatment. Electrochim Acta 37(7):1253–1260. https://doi.org/10.1016/0013-4686(92)85064-R

    Article  CAS  Google Scholar 

  35. Rahmani AR, Nematollahi D, Samarghandi MR, Samadi MT, Azarian G (2018) A central composite design to optimize in-situ electrochemically produced ozone for removal of reactive red 198. J Electrochem Soc 165(3):E121. https://doi.org/10.1149/2.0201803jes

    Article  CAS  Google Scholar 

  36. Lin L, Wang H, Jiang W, Mkaouar AR, Xu P (2017) Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 333:162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044

    Article  CAS  PubMed  Google Scholar 

  37. Liu L-P, Yang X-N, Ye L, Xue D-D, Liu M, Jia S-R, Hou Y, Chu L-Q, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohyd Polym 174:1078–1086. https://doi.org/10.1016/j.carbpol.2017.07.042

    Article  CAS  Google Scholar 

  38. Pirinejad L, Maleki A, Shahmoradi B, Daraei H, Yang J-K, Lee S-M (2019) Synthesis and application of Fe-N-Cr-TiO2 nanocatalyst for photocatalytic degradation of acid black 1 under LED light irradiation. J Mol Liq 279:232–240. https://doi.org/10.1016/j.molliq.2019.01.135

    Article  CAS  Google Scholar 

  39. Görmez F, Görmez Ö, Gözmen B, Kalderis D (2019) Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst. J Environ Chem Eng 7(2):102990. https://doi.org/10.1016/j.jece.2019.102990

    Article  CAS  Google Scholar 

  40. Wang C, Astruc D (2018) Recent developments of metallic nanoparticle-graphene nanocatalysts. Prog Mater Sci 94:306–383. https://doi.org/10.1016/j.pmatsci.2018.01.003

    Article  CAS  Google Scholar 

  41. Xiao L, Youji L, Feitai C, Peng X, Ming L (2017) Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv 7(41):25314–25324. https://doi.org/10.1039/C7RA02198D

    Article  CAS  Google Scholar 

  42. Hajiali M, Farhadian M, Tangestaninejad S (2022) Novel ZnO nanorods/ Mo /MIL-101 (Fe) heterostructure immobilized on FTO with boosting photocatalytic activity for tetracycline degradation: reaction mechanism and toxicity assessment. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.154389

    Article  Google Scholar 

  43. Bashiri F, Khezri SM, Kalantary RR, Kakavandi B (2020) Enhanced photocatalytic degradation of metronidazole by TiO2 decorated on magnetic reduced graphene oxide: characterization, optimization and reaction mechanism studies. J Mol Liq 314:113608. https://doi.org/10.1016/j.molliq.2020.113608

    Article  CAS  Google Scholar 

  44. Agarwal S, Tyagi I, Gupta VK, Sohrabi M, Mohammadi S, Golikand AN, Fakhri A (2017) Iron doped Sn O2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Mater Sci Eng C 70:178–183. https://doi.org/10.1016/j.msec.2016.08.062

    Article  CAS  Google Scholar 

  45. Askari N, Beheshti M, Mowla D, Farhadian M (2020) Fabrication of CuW O4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. Chemosphere 251:126453. https://doi.org/10.1016/j.chemosphere.2020.126453

    Article  CAS  PubMed  Google Scholar 

  46. Hajiali M, Farhadian M, Tangestaninejad S (2022) Synthesis and characterization of Bi2 Mo O6/MIL-101 (Fe) as a novel composite with enhanced photocatalytic performance: effect of water matrix and reaction mechanism. Adv Powder Technol 33(5):103546. https://doi.org/10.1016/j.apt.2022.103546

    Article  CAS  Google Scholar 

  47. Malakootian M, Moridi A (2017) Efficiency of electro-Fenton process in removing acid red 18 dye from aqueous solutions. Process Saf Environ Prot 111:138–147. https://doi.org/10.1016/j.psep.2017.06.008

    Article  CAS  Google Scholar 

  48. Xia Y, Zhang Q, Li G, Tu X, Zhou Y, Hu X (2019) Biodegradability enhancement of real antibiotic metronidazole wastewater by a modified electrochemical Fenton. J Taiwan Inst Chem Eng 96:256–263. https://doi.org/10.1016/j.jtice.2018.11.019

    Article  CAS  Google Scholar 

  49. Wang W, Li Y, Li Y, Zhou M, Arotiba OA (2020) Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration. Chemosphere 250:126177. https://doi.org/10.1016/j.chemosphere.2020.126177

    Article  CAS  PubMed  Google Scholar 

  50. Xia Y, Feng J, Fan S, Zhou W, Dai Q (2021) Fabrication of a multi-layer CNT-Pb O2 anode for the degradation of isoniazid: kinetics and mechanism. Chemosphere 263:128069. https://doi.org/10.1016/j.chemosphere.2020.128069

    Article  CAS  PubMed  Google Scholar 

  51. Ye Z, Brillas E, Centellas F, Cabot PL, Sirés I (2020) Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. Water Res 169:115219. https://doi.org/10.1016/j.watres.2019.115219

    Article  CAS  PubMed  Google Scholar 

  52. Ahmadzadeh S, Dolatabadi M (2018) Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere 212:533–539. https://doi.org/10.1016/j.chemosphere.2018.08.107

    Article  CAS  PubMed  Google Scholar 

  53. Martínez-Pachón D, Ibáñez M, Hernández F, Torres-Palma RA, Moncayo-Lasso A (2018) Photo-electro-Fenton process applied to the degradation of valsartan: effect of parameters, identification of degradation routes and mineralization in combination with a biological system. J Environ Chem Eng 6(6):7302–7311. https://doi.org/10.1016/j.jece.2018.11.015

    Article  CAS  Google Scholar 

  54. Pérez T, Garcia-Segura S, El-Ghenymy A, Nava JL, Brillas E (2015) Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor. Electrochim Acta 165:173–181. https://doi.org/10.1016/j.electacta.2015.02.243

    Article  CAS  Google Scholar 

  55. Xu L, Yang Y, Li W, Tao Y, Sui Z, Song S, Yang J (2019) Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. Sci Total Environ 658:219–233. https://doi.org/10.1016/j.scitotenv.2018.12.040

    Article  CAS  PubMed  Google Scholar 

  56. Aboudalle A, Djelal H, Domergue L, Fourcade F, Amrane A (2021) A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. J Hazard Mater 415:125705. https://doi.org/10.1016/j.jhazmat.2021.125705

    Article  CAS  PubMed  Google Scholar 

  57. Talwar S, Verma AK, Sangal VK, Štangar UL (2020) Once through continuous flow removal of metronidazole by dual effect of photo-Fenton and photocatalysis in a compound parabolic concentrator at pilot plant scale. Chem Eng J 388:124184. https://doi.org/10.1016/j.cej.2020.124184

    Article  CAS  Google Scholar 

  58. Sun J, Hou Y, Yu Z, Tu L, Yan Y, Qin S, Chen S, Lan D, Zhu H, Wang S (2021) Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr(VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism. J Hazard Mater 419:126543. https://doi.org/10.1016/j.jhazmat.2021.126543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Amin Pharmaceutical Company (Iran) for providing metronidazole. The authors also very much appreciate the support of the Environmental Research Institute and Central Laboratory of University of Isfahan, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Farhadian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiei, M., Farhadian, M., Solaimany Nazar, A.R. et al. Integrated Electro-photo-Fenton process and visible light-driven TiO2/rGO/Fe2O3 photocatalyst based on graphite cathode in the presence of iron anode for Metronidazole degradation. J Appl Electrochem 53, 65–83 (2023). https://doi.org/10.1007/s10800-022-01760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01760-4

Keywords

Navigation