Skip to main content
Log in

Multifunctional sensors based on TiO2-Sb-SbOx films, formed by anodic–cathodic electrochemical treatment of titanium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ti/TiO2-Sb-SbOx multifunctional sensors were obtained by plasma electrolytic oxidation in the anodic–cathodic mode. The resulting films contain TiO2 and up to 5 at.% Sb in the form of Sb0 and Sb6O13. Electrode functions E vs pH are linear in the range of pH 2 ÷ 10 with slopes of 68 ± 6 and 48 ± 2 mV·pH−1 for sensors formed at iC/iA = 1 and 1.2, respectively. The Ti/TiO2-Sb-SbOx sensor obtained at iC/iA = 1.2, despite its low response, shows results similar to the glass electrode in acid–base titration and can be used to accurately determine the alkalinity of natural and technogenic waters. The possibility of application of such sensors in potentiometric acid–base, redox, complexometric, and precipitation chemical reactions was revealed. The multifunctionality of the Ti/TiO2-Sb-SbOx sensor makes it possible to analyze aqueous solutions of complex composition using the same electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Roberts EJ, Fenwick F (1928) The antimony-antimony trioxide electrode and its use as a measure of acidity. J Am Chem Soc 50:2125–2147. https://doi.org/10.1021/ja01395a010

    Article  CAS  Google Scholar 

  2. Stock JT, Purdy WC, Garcia LM (1958) The antimony-antimony oxide electrode. Chem Rev 58:611–626. https://doi.org/10.1021/cr50022a001

    Article  CAS  Google Scholar 

  3. Głab S, Hulanicki A, Edwall G, Ingman F (1989) Metal-metal oxide and metal oxide electrodes as pH Sensors. Crit Rev Anal Chem 21:29–47. https://doi.org/10.1080/10408348908048815

    Article  PubMed  Google Scholar 

  4. Edwall G (1978) Improved antimony-antimony (III) oxide pH electrodes. Med Biol Eng Comput 16:661–669. https://doi.org/10.1007/BF02442445

    Article  CAS  PubMed  Google Scholar 

  5. Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sens Actuators 5:137–146. https://doi.org/10.1016/0250-6874(84)80004-9

    Article  CAS  Google Scholar 

  6. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9:4955–4985. https://doi.org/10.3390/s90604955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horton BE, Schweitzer S, DeRouin AJ, Ong KG (2011) A varactor-based, inductively coupled wireless pH sensor. IEEE Sens J 11:1061–1066. https://doi.org/10.1109/JSEN.2010.2062503

    Article  CAS  Google Scholar 

  8. Manjakkal L, Szwagierczak D, Dahiya R (2020) Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog Mater Sci 109:100635. https://doi.org/10.1016/j.pmatsci.2019.100635

    Article  CAS  Google Scholar 

  9. Neupane S, Mishra D, Nakarmi KB, Gupta DK, Yadav RJ, Yadav AP (2021) Preparation of antimony oxide in different media and its effect on the pH measurement. Anal Bioanal Electrochem 13:127–138

    CAS  Google Scholar 

  10. Ghalwa NA, Hamada M, Abu-Shawish HM, Swareh AA, Askalany MA, Siam T (2012) Using of Ti/Co3O4/PbO2/(SnO2+Sb2O3) modified electrode as indicator electrode in potentiometric and conductometric titration in aqueous solution. J Electroanal Chem 664:7–13. https://doi.org/10.1016/j.jelechem.2011.10.005

    Article  CAS  Google Scholar 

  11. Hamada M (2014) Development of Ti/PbO2/Sb2O3 electrode as indicator electrode for pH measurements and conductometric titrations in aqueous solutions. Int J Pharm Bio Sci 5:50–65

    Google Scholar 

  12. Vasilyeva MS, Rudnev VS, Zabudskaya NE, Ustinov AYu, Zasukhina LA, Marinina GI (2020) Preparation and study of Ti/TiO2, SbOx pH electrodes. J Anal Chem 75:246–253. https://doi.org/10.1134/S1061934820020173

    Article  CAS  Google Scholar 

  13. Serrano NM, Díaz-Cruz J, Ariño C, Esteban M (2016) Antimony-based electrodes for analytical determinations. Trends Anal Chem 77:203–213. https://doi.org/10.1016/j.trac.2016.01.011

    Article  CAS  Google Scholar 

  14. Lakhdar MH, Smida YB, Amlouk M (2016) Synthesis, optical characterization and DFT calculations of electronic structure of Sb2O3 films obtained by thermal oxidation of Sb2S3. J Alloys Compd 681:197–204. https://doi.org/10.1016/j.jallcom.2016.04.026

    Article  CAS  Google Scholar 

  15. Tan Y, Chen L, Chen H, Hou Q, Chen X (2018) Synthesis of a symmetric bundle-shaped Sb2O3 and its application for anode materials in lithium ion batteries. Mater Lett 212:103–106. https://doi.org/10.1016/j.matlet.2017.10.080

    Article  CAS  Google Scholar 

  16. Han Q, Sheng Y, Han Z, Li X, Zhang W, Li Y, Zhang X (2020) Metallic Sb nanoparticles embedded into a yolk–shell Sb2O3@TiO2 composite as anode materials for lithium ion batteries. New J Chem 44:13430. https://doi.org/10.1039/c9nj05947d

    Article  CAS  Google Scholar 

  17. Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O, Edström K (2007) Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater 19:1170–1180. https://doi.org/10.1021/cm0624769

    Article  CAS  Google Scholar 

  18. Bryngelsson H, Eskhult J, Edström K, Nyholm L (2007) Electrodeposition and electrochemical characterization of thick and thin coatings of Sb and Sb/Sb2O3 particles for Li ion battery anodes. Electrochim Acta 53:1062–1073. https://doi.org/10.1016/j.electacta.2007.02.009

    Article  CAS  Google Scholar 

  19. Schutz RW, Thomas DE (2005) Corrosion of titanium and titanium alloys. In: Cramer SD and Covino, Jr. BS (eds) Corrosion: Materials. Vol 13B, ASM Handbook, ASM International, pp. 252–299

  20. Chou JC, Liu CH, Chen CC (2011) Electrochromic property of sol-gel derived TiO2 thin film for pH sensor. IFMBE Proc 35:69–72. https://doi.org/10.1007/978-3-642-21729-6_21

    Article  Google Scholar 

  21. Shin PK (2003) The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD. Appl Surf Sci 214:214–221. https://doi.org/10.1016/S0169-4332(03)00340-4

    Article  CAS  Google Scholar 

  22. Zhao R, Xu M, Wang J, Chen G (2010) A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta 55:5647–5651. https://doi.org/10.1016/j.electacta.2010.04.102

    Article  CAS  Google Scholar 

  23. Simić M, Manjakkal L, Zaraska K, Stojanović GM, Dahiya R (2016) TiO2 based thick film pH sensor. IEEE Sens J 17:248–255. https://doi.org/10.1109/JSEN.2016.2628765

    Article  Google Scholar 

  24. Marinina GI, Reznik MF, Tyrin VI, Gordienko PS (1996) Electroanalytical properties of some oxide film electrodes. J Analyt Chem 51:896–899

    CAS  Google Scholar 

  25. Marinina GI, Vasilyeva MS, Lapina AS, Ustinov AYu, Rudnev VS (2013) Electroanalytical properties of metal–oxide electrodes formed by plasma electrolytic oxidation. J Electroan Chem 689:262–268. https://doi.org/10.1016/j.jelechem.2012.10.032

    Article  CAS  Google Scholar 

  26. Vasilyeva MS, Rudnev VS, Arefieva OD, Lapina AS, Plyusnina VI, Marinina GI (2016) Ti/TiO2 indicator electrodes formed by plasma electrolytic oxidation for potentiometric analysis. Int J Environ Anal Chem 96:1128–1144. https://doi.org/10.1080/03067319.2016.1243241

    Article  CAS  Google Scholar 

  27. Vasilyeva MS, Lukiyanchuk IV, Ustinov AY, Shchitovskaya EV, Marinina GI (2020) Anodic-cathodic formation of pH-sensitive TiO2-MoOx films on titanium. J Electroanal Chem 873:114388. https://doi.org/10.1016/j.jelechem.2020.114388

    Article  CAS  Google Scholar 

  28. Kaseem M, Fatimah S, Nashrah N, Ko YG (2021) Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog Mater Sci 117:100735. https://doi.org/10.1016/j.pmatsci.2020.100735

    Article  CAS  Google Scholar 

  29. Aliofkhazraei M, Macdonald DD, Matykina E, Parfenov EV, Egorkin VS, Curran JA, Troughton SC, Sinebryukhov SL, Gnedenkov SV, Lampke T, Simchen F, Nabavi HF (2021) Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Appl Surf Sci Adv 51:100121. https://doi.org/10.1016/j.apsadv.2021.100121

    Article  Google Scholar 

  30. Grigoriev SN, Kondratsky I, Krit BL, Ludin VB, Medvetskova VM, Morozova NV, Suminov IV, Apelfeld AV, Wu RZ (2022) Protective and thermophysical characteristics of plasma electrolytic coatings on the ultralight magnesium alloy. J Eng Mater Technol Trans ASME 144:021006. https://doi.org/10.1115/1.4052718

    Article  Google Scholar 

  31. Abbasi S, Mahboob A, Bakhtiari Zamani H, Bilesan MR, Repo E, Hakimi A (2022) The tribological behavior of nanocrystalline TiO2 coating produced by plasma electrolytic oxidation. J Nanomater. https://doi.org/10.1155/2022/5675038

    Article  Google Scholar 

  32. Molaei M, Fattah-Alhosseini A, Nouri M, Mahmoodi P, Navard SH, Nourian A (2022) Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surf Interfaces 30:101967. https://doi.org/10.1016/j.surfin.2022.101967

    Article  CAS  Google Scholar 

  33. Kostelac L, Pezzato L, Settimi AG, Franceschi M, Gennari C, Brunelli K, Rampazzo C, Dabalà M (2022) Investigation of hydroxyapatite (HAP) containing coating on grade 2 titanium alloy prepared by plasma electrolytic oxidation (PEO) at low voltage. Surf Interfaces 30:101888. https://doi.org/10.1016/j.surfin.2022.101888

    Article  CAS  Google Scholar 

  34. Dong S, Wang J, Tang X, Li J, Zhang X, Liu B (2021) Low-temperature and stable CO oxidation of in-situ grown monolithic Mn3O4/TiO2 catalysts. J Alloys Compd 855:157444. https://doi.org/10.1016/j.jallcom.2020.157444

    Article  CAS  Google Scholar 

  35. Stojadinović S, Radić N, Tadić N, Vasilić R, Tsanev A (2022) TiO2/Bi2O3 coatings formed by plasma electrolytic oxidation of titanium for photocatalytic applications. J Mater Sci: Mater Electron 33:4467–4481. https://doi.org/10.1007/s10854-021-07637-0

    Article  CAS  Google Scholar 

  36. Mamaev AI, Dolgova YN, Yeltsov AA, Plekhanov GV, Ryabikov AE, Baranova TA, Mamaeva VA (2020) Heterogeneous metal oxide coatings with magnetoactive nickel, cobalt, and iron phases formed by the method of pulsed microplasma oxidation for radiation absorption in the middle and near-IR regions. Russ Phys J 63:1265–1276. https://doi.org/10.1007/s11182-020-02149-6

    Article  CAS  Google Scholar 

  37. Xin SG, Song LX, Zhao RG, Hu XF (2006) Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films 515:326–332. https://doi.org/10.1016/j.tsf.2005.12.087

    Article  CAS  Google Scholar 

  38. Sah SP, Tsuji E, Aoki Y, Habazaki H (2012) Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte - understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation. Corrosion Sci 55:90–96. https://doi.org/10.1016/j.corsci.2011.10.007

    Article  CAS  Google Scholar 

  39. Rogov AB, Huang Y, Shore D, Matthews A, Yerokhin A (2021) Toward rational design of ceramic coatings generated on valve metals by plasma electrolytic oxidation: The role of cathodic polarization. Ceram Int 47:34137–34158. https://doi.org/10.1016/j.ceramint.2021.08.324

    Article  CAS  Google Scholar 

  40. Gebarowski W, Pietrzyk S (2013) Influence of the cathodic pulse on the formation and morphology of oxide coatings on aluminium, produced by plasma electrolytic oxidation. Arch Metal Mater 58:241–245. https://doi.org/10.2478/v10172-012-0180-7

    Article  CAS  Google Scholar 

  41. Wojtas R (1975) Complexes of antimony(III). Part I. Polarographic studies on complex formation in systems: Sb(ClO4)3–L–H2O (L= CHO2-, C2H3O2-, C3H5O2-, C3H2O42-, C4H4O42-, C5H6O42-, C4H4O52-, and C4H4O62-. Rocz Chem 49:1231–1237. https://doi.org/10.1002/CHIN.197548366

    Article  CAS  Google Scholar 

  42. Rudnev VS (2007) Growth of anodic oxide layers under electric discharge conditions. Protect Met 43:275–280. https://doi.org/10.1134/S0033173207030125

    Article  CAS  Google Scholar 

  43. Luo Q, Cai QZ, He J, Li XW, Chen XD, Pan ZH, Li YJ (2014) A novel way to prepare visible-light-responsive WO3/TiO2 composite film with high porosity. Int J Appl Ceram Technol 11:254–262. https://doi.org/10.1111/ijac.12062

    Article  CAS  Google Scholar 

  44. Rudnev VS, Adigamova MV, Lukiyanchuk IV, Ustinov AYu, Tkachenko IA, Kharitonskii PV, Frolov AM, Morozova VP (2012) The effect of the conditions of formation on ferromagnetic properties of iron-containing oxide coatings on titanium. Prot Met Phys Chem Surf 48:543–552. https://doi.org/10.1134/S2070205112050097

    Article  CAS  Google Scholar 

  45. Voigt K, Heubner C, Liebmann T, Matthey B, Weiser M, Schneider M, Michaelis A (2020) Electrodeposition of versatile nanostructured Sb/Sb2O3 microcomposites: a parameter study Adv. Mater Interfaces. https://doi.org/10.1002/admi.202000004

    Article  Google Scholar 

  46. Vovna VI, Gnedenkov SV, Gordienko PS, Kuznetsov MV, Sinebryukhov SL, Cherednichenko AI, Khrisanfova OA (1998) Surface layers produced on titanium by the microarc oxidation: An X-ray diffractometry study. Russ J Electrochem 34:1090–1093

    CAS  Google Scholar 

  47. Rudnev VS, Vaganov-Vil’kins AA, Ustinov AY, Nedozorov PM (2011) Carbon in oxide layers formed under electric discharge conditions. Prot Met Phys Chem 47:330–338. https://doi.org/10.1134/S2070205111030130

    Article  CAS  Google Scholar 

  48. Gnedenkov SV, Sinebryukhov SL, Zavidnaya AG, Egorkin VS (2014) Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation based route. J Taiwan Inst Chem Eng 45:3104–3109. https://doi.org/10.1016/j.jtice.2014.03.022

    Article  CAS  Google Scholar 

  49. Sanjinés R, Tang H, Berger H, Gozzo F, Lévy MG (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75:2945. https://doi.org/10.1063/1.356190

    Article  Google Scholar 

  50. Delobel R, Baussart H, Leroy JM, Grimblot J, Gengembre L (1983) X-ray photoelectron spectroscopy study of uranium and antimony mixed metal-oxide catalysts. J Chem Soc Faraday Trans 79:879–891. https://doi.org/10.1039/F19837900879

    Article  CAS  Google Scholar 

  51. Wang M, Ha Y (2007) An electrochemical approach to monitor pH change in agar media during plant tissue culture. Biosens Bioelectron 22:2718–2723. https://doi.org/10.1016/j.bios.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  52. Akinay Y, Kazici HC, Akkus IN, Salman F (2021) Synthesis of 3D Sn doped Sb2O3 catalysts with differentmorphologies and their effects on the electrocatalytic hydrogen evolution reaction in acidic medium. Ceram Int 47:29515–29524. https://doi.org/10.1016/j.ceramint.2021.07.278

    Article  CAS  Google Scholar 

  53. Chemistry LibreTexts, Electrochemistry Tables, P1: Standard Reduction Potentials by Element. Available online: https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Electrochemistry_Tables/P1%3A_Standard_Reduction_Potentials_by_Element.

  54. Schwarzenbach G, Flaschka H (1969) Complexometric titrations. Methuen, London

    Google Scholar 

  55. Wang X, Du Y, Yang H, Tian S, Ge Q, Huang S, Wang M (2021) Removal of chloride ions from acidic solution with antimony oxides. J Ind Eng Chem 93:170–175. https://doi.org/10.1016/j.jiec.2020.09.020

    Article  CAS  Google Scholar 

  56. Vlasov YG, Borota VA, Ermolenko YE (2003) Low-selective GaAs and GaSb semiconductor sensors for potentiometric analysis of liquid media. Russ J Appl Chem 76:569–571. https://doi.org/10.1023/A:1025726901649

    Article  CAS  Google Scholar 

  57. Burakhta VA, Sataeva SS (2014) Electrochemically modified semiconductor gallium arsenide electrodes for the argentometric titration of chlorides with silver nitrate in natural samples. J Analyt Chem 69:1079–1082. https://doi.org/10.1134/S1061934814110033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The obtaining of PEO layers, their study by XRD, and EDX methods were performed within the framework of the Institute of Chemistry FEB RAS State Order (project no. FWFN(0205)-2022-0001). Electroanalytical properties of the composites were studied at the Far Eastern Federal University.

Funding

Far East Branch, Russian Academy of Sciences, FWFN(0205)-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vasilyeva.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, M.S., Lukiyanchuk, I.V., Shchitovskaya, E.V. et al. Multifunctional sensors based on TiO2-Sb-SbOx films, formed by anodic–cathodic electrochemical treatment of titanium. J Appl Electrochem 52, 1747–1760 (2022). https://doi.org/10.1007/s10800-022-01745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01745-3

Keywords

Navigation