Skip to main content

Advertisement

Log in

Cobalt doping stabilizes the expanded structure of layered double hydroxide cathodes for application in fast charging Ni–Zn batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Improving the reversible capacity, fast chargeability, and cyclability of cathode materials are the primary challenges in the development of advanced rechargeable batteries. Herein, we discover the synergetic effects of cobalt ions in achieving a capacity that is approximately equivalent to the theoretical capacity, a highly stable cyclability, and a superior rate capability of Co-doped nickel layered double hydroxides (Ni1−xCox-LDH). The cobalt dopants stabilize the α-phase LDH with an expanded interlayer distance, drawing the redox potential within the voltage stability window and enabling the maximum charging of the cathode. In addition, cobalt doping provides robust nanostructures with a highly porous morphology, which is highly suitable for enhanced rate capability. The optimized Ni0.9Co0.1-LDH material exhibits a high specific capacity of 310 mAh g−1 with excellent cycle retention and fast chargeability, indicating a superior rate capability compared to conventional Ni(OH)2. Consequently, the full cell of the Ni0.9Co0.1-LDH cathode and Zn metal anode exhibits maximum energy and power densities of 288 Wh kg‒1 and 1973 W kg‒1, respectively. The enhanced performance of Ni1−xCox-LDH indicates its excellent potential as a cathode material with high energy and power densities for safe and sustainable energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Watanabe K, Kikuoka T, Kumagai N (1995) Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem 25:219–226. https://doi.org/10.1007/bf00262959

    Article  CAS  Google Scholar 

  2. Cheng B, Le Y, Cai W, Yu J (2011) Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater 185:889–897. https://doi.org/10.1016/j.jhazmat.2010.09.104

    Article  CAS  PubMed  Google Scholar 

  3. Drenkova-Tuhtan A, Schneider M, Mandel K, Meyer C, Gellermann C, Sextl G, Steinmetz H (2016) Influence of cation building blocks of metal hydroxide precipitates on their adsorption and desorption capacity for phosphate in wastewater—a screening study. Colloids Surf A 488:145–153. https://doi.org/10.1016/j.colsurfa.2015.10.017

    Article  CAS  Google Scholar 

  4. Song F, Hu X (2014) Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136:16481–16484. https://doi.org/10.1021/ja5096733

    Article  CAS  PubMed  Google Scholar 

  5. Swierk JR, Klaus S, Trotochaud L, Bell AT, Tilley TD (2015) Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy)hydroxide catalysts. J Phys Chem C 119:19022–19029. https://doi.org/10.1021/acs.jpcc.5b05861

    Article  CAS  Google Scholar 

  6. Xu Q, Li J, Tian J, Zhu J, Gao X (2014) Energy-effective frost-free coatings based on superhydrophobic aligned nanocones. ACS Appl Mater Interfaces 6:8976–8980. https://doi.org/10.1021/am502607e

    Article  CAS  PubMed  Google Scholar 

  7. Chang Y-H, Hau NY, Liu C, Huang Y-T, Li C-C, Shih K, Feng S-P (2014) A short-range ordered–disordered transition of a NiOOH/Ni(OH)2 pair induces switchable wettability. Nanoscale 6:15309–15315. https://doi.org/10.1039/C4NR05261G

    Article  CAS  PubMed  Google Scholar 

  8. Cui J, Li Z, Wang G, Guo J, Shao M (2020) Layered double hydroxides and their derivatives for lithium–sulfur batteries. J Mater Chem A 8:23738–23755. https://doi.org/10.1039/D0TA08573A

    Article  CAS  Google Scholar 

  9. Tomboc GM, Kim J, Wang Y, Son Y, Li J, Kim JY, Lee K (2021) Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. J Mater Chem A 9:4528–4557. https://doi.org/10.1039/D0TA11606H

    Article  CAS  Google Scholar 

  10. Jing C, Dong B, Zhang Y (2020) Chemical modifications of layered double hydroxides in the supercapacitor. Energy Environ Mater 3:346–379. https://doi.org/10.1002/eem2.12116

    Article  CAS  Google Scholar 

  11. Guo X, Zheng X, Hu X, Zhao Q, Li L, Yu P, Jing C, Zhang Y, Huang G, Jiang B (2021) Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy 84:105932. https://doi.org/10.1016/j.nanoen.2021.105932

    Article  CAS  Google Scholar 

  12. Delmas C, Borthomieu Y (1993) Chimie Douce reactions: a new route to obtain well crystallized layer double hydroxides. J Solid State Chem 104:345–352. https://doi.org/10.1006/jssc.1993.1169

    Article  CAS  Google Scholar 

  13. Martins PR, Araújo Parussulo AL, Toma SH, Rocha MA, Toma HE, Araki K (2012) Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. J Power Sources 218:1–4. https://doi.org/10.1016/j.jpowsour.2012.06.065

    Article  CAS  Google Scholar 

  14. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942. https://doi.org/10.1002/adfm.201301747

    Article  CAS  Google Scholar 

  15. Blanc LE, Kundu D, Nazar LF (2020) Scientific challenges for the implementation of Zn-ion batteries. Joule 4:771–799. https://doi.org/10.1016/j.joule.2020.03.002

    Article  CAS  Google Scholar 

  16. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A 471:20140792. https://doi.org/10.1098/rspa.2014.0792

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bode H, Dehmelt K, Witte J (1966) Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochim Acta 11:1079–1087. https://doi.org/10.1016/0013-4686(66)80045-2

    Article  CAS  Google Scholar 

  18. Corrigan DA, Knight SL (1989) Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel–hydroxide redox reaction. J Electrochem Soc 136:613–619. https://doi.org/10.1149/1.2096697

    Article  CAS  Google Scholar 

  19. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, Guibert Ad (1982) Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J Power Sources 8:229–255. https://doi.org/10.1016/0378-7753(82)80057-8

    Article  CAS  Google Scholar 

  20. Delmas C, Braconnier JJ, Borthomieu Y, Figlarz M (1988) From sodium nickelate to nickel hydroxide. Solid State Ionics 28–30:1132–1137. https://doi.org/10.1016/0167-2738(88)90344-X

    Article  Google Scholar 

  21. Nagaraju G, Raju GSR, Ko YH, Yu JS (2016) Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812–825. https://doi.org/10.1039/C5NR05643H

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Fortunato M, Cardinale AM, Sarapulova A, Njel C, Dsoke S (2022) Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder. J Solid State Electrochem 26:49–61. https://doi.org/10.1007/s10008-021-05011-y

    Article  CAS  Google Scholar 

  23. Qin R, Pan Y, Duan Z, Su H, Ren K, Wang W, Li Y, Xi N, Wang Y, Zhang L, Han S (2021) Achieving high stability and rate performance using spherical nickel–zinc layered double hydroxide in alkaline solution. J Electrochem Soc 168:070539. https://doi.org/10.1149/1945-7111/ac131d

    Article  CAS  Google Scholar 

  24. Iranzo A, Mulder FM (2021) Nickel–iron layered double hydroxides for an improved Ni/Fe hybrid battery-electrolyser. Mater Adv 2:5076–5088. https://doi.org/10.1039/D1MA00024A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng X, Feng M, Zhang H, Ma Z, Zhang C (2017) Solvothermal synthesis of cobalt/nickel layered double hydroxides for energy storage devices. J Alloys Compd 695:3522–3529. https://doi.org/10.1016/j.jallcom.2016.11.419

    Article  CAS  Google Scholar 

  26. Zhang L, Song S, Shi H (2018) One-pot methanol-mediated solvothermal synthesis of 3D porous Co-doped α-Ni(OH)2/RGO nanosheets as a high-performance pseudo-capacitance electrode. J Alloys Compd 751:69–79. https://doi.org/10.1016/j.jallcom.2018.04.109

    Article  CAS  Google Scholar 

  27. Liu L, Hou Y, Gao Y, Yang N, Liu J, Wang X (2019) Co doped α-Ni (OH)2 multiple-dimensional structure electrode material. Electrochim Acta 295:340–346. https://doi.org/10.1016/j.electacta.2018.10.137

    Article  CAS  Google Scholar 

  28. Zhang L, Qin R, Pan Y, Duan Z, Li Y, Xi N, Jian L, Han S (2022) Boosting discharge capability of α-Ni(OH)2 by cobalt doping based on robust spherical structure. Int J Hydrogen Energy 47:1083–1091. https://doi.org/10.1016/j.ijhydene.2021.10.040

    Article  CAS  Google Scholar 

  29. Amaranatha Reddy D, Lee H, Gopannagari M, Praveen Kumar D, Kwon K, Yoo HD, Kim TK (2020) Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. Int J Hydrog Energy 45:7741–7750. https://doi.org/10.1016/j.ijhydene.2019.06.004

    Article  CAS  Google Scholar 

  30. Poompiew N, Pattananuwat P, Potiyaraj P (2021) Controllable morphology of sea-urchin-like nickel–cobalt carbonate hydroxide as a supercapacitor electrode with battery-like behavior. ACS Omega 6:25138–25150. https://doi.org/10.1021/acsomega.1c02139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye L, Zhao L, Zhang H, Zhang B, Wang H (2016) One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J Mater Chem A 4:9160–9168. https://doi.org/10.1039/C6TA02436J

    Article  CAS  Google Scholar 

  32. Yang Y, Zhou M, Guo W, Cui X, Li Y, Liu F, Xiao P, Zhang Y (2015) NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation. Electrochim Acta 174:246–253. https://doi.org/10.1016/j.electacta.2015.05.159

    Article  CAS  Google Scholar 

  33. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887. https://doi.org/10.1039/C2EE21745G

    Article  CAS  Google Scholar 

  34. Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855–861. https://doi.org/10.1021/ja00003a019

    Article  CAS  Google Scholar 

  35. Deng S, Xiao X, Chen G, Wang L, Wang Y (2016) Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim Acta 196:316–327. https://doi.org/10.1016/j.electacta.2016.02.195

    Article  CAS  Google Scholar 

  36. Guo X, Zheng T, Ji G, Hu N, Xu C, Zhang Y (2018) Core/shell design of efficient electrocatalysts based on NiCo2O4 nanowires and NiMn LDH nanosheets for rechargeable zinc–air batteries. J Mater Chem A 6:10243–10252. https://doi.org/10.1039/C8TA02608D

    Article  CAS  Google Scholar 

  37. Ida S, Shiga D, Koinuma M, Matsumoto Y (2008) Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J Am Chem Soc 130:14038–14039. https://doi.org/10.1021/ja804397n

    Article  CAS  PubMed  Google Scholar 

  38. Xa C, Chen X, Zhang F, Yang Z, Huang S (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:555–561. https://doi.org/10.1016/j.jpowsour.2013.04.076

    Article  CAS  Google Scholar 

  39. Cui H, Xue J, Wang M (2015) Synthesis of high electrochemical performance Ni(OH)2 nanosheets through a solvent-free reaction for application in supercapacitor. Adv Powder Technol 26:434–438. https://doi.org/10.1016/j.apt.2014.11.016

    Article  CAS  Google Scholar 

  40. Kurzweil P (2009) CAPACITORS | electrochemical double-layer capacitors. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 607–633. https://doi.org/10.1016/B978-044452745-5.00353-1

    Chapter  Google Scholar 

  41. Nagaraju G, Sekhar SC, Yu JS (2018) Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv Energy Mater 8:1702201. https://doi.org/10.1002/aenm.201702201

    Article  CAS  Google Scholar 

  42. Lai F, Miao Y-E, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel–cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12:3235–3244. https://doi.org/10.1002/smll.201600412

    Article  CAS  PubMed  Google Scholar 

  43. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894. https://doi.org/10.1038/ncomms2932

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477. https://doi.org/10.1021/ja102267j

    Article  CAS  PubMed  Google Scholar 

  45. Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586. https://doi.org/10.1038/ncomms11586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li R, Hu Z, Shao X, Cheng P, Li S, Yu W, Lin W, Yuan D (2016) Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci Rep 6:18737. https://doi.org/10.1038/srep18737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Li Z, Zhang J, Yan H, Wang C, Wu F, Tian A, Hong X, Dong W, Yang S (2020) Effect of average interlayer spacing on capacitance of NiMn layered double hydroxide. Chem Eng J 398:125618. https://doi.org/10.1016/j.cej.2020.125618

    Article  CAS  Google Scholar 

  48. Yang H, Guo T, Qin K, Liu Q (2021) Different interlayer anions controlled zinc cobalt layered double hydroxide nanosheets for ethanol electrocatalytic oxidation. J Phys Chem C 125:24867–24875. https://doi.org/10.1021/acs.jpcc.1c06449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Kyu Kim or Hyun Deog Yoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopannagari, M., Muniraj, V.K.A., Kwon, K.Y. et al. Cobalt doping stabilizes the expanded structure of layered double hydroxide cathodes for application in fast charging Ni–Zn batteries. J Appl Electrochem 52, 1449–1458 (2022). https://doi.org/10.1007/s10800-022-01723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01723-9

Keywords

Navigation