Skip to main content
Log in

RETRACTED ARTICLE: Porous NiO via pulsed electrodeposition towards enhanced electrochromic properties

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

This article was retracted on 15 July 2023

This article has been updated

Abstract

Herein, a facile pulse electrodeposition procedure with a 1 s off-time between pulses is reported for a successful fabrication of porous nickel oxide (NiO) films on an indium tin oxide substrate. Large transmittance modulation of 39.2% at 550 nm, fast switching speed (coloring and bleaching of 5.2 s and 2.3 s), high coloration efficiency of 20.01 cm2 C−1, and long-term stability over 750 cycles were achieved. In comparison to the NiO films synthesized by continuous electrodeposition, the porous morphology of the NiO fabricated by pulsed electrodeposition facilitates charge transfer and electrolyte infiltration, as well as reduces the expansion/shrinkage of the NiO lattice during OH insertion/extraction, resulting in an outstanding electrochromic performance. These results show that pulsed electrodeposition is a promising method for manufacturing NiO films with enhanced EC performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

Change history

References

  1. Wang X, Liu B, Tang J et al (2019) Preparation of Ni(OH)2/TiO2 porous film with novel structure and electrochromic property. Sol Energy Mater Sol Cells 191:108–116

    CAS  Google Scholar 

  2. Liu Q, Dong G, Xiao Y et al (2015) An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Mater Lett 142:232–234

    CAS  Google Scholar 

  3. Shen DE, Österholm AM, Reynolds JR (2015) Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J Mater Chem C 3:9715–9725

    Google Scholar 

  4. Choi D, Lee M, Kim H et al (2018) Investigation of dry-deposited ion storage layers using various oxide particles to enhance electrochromic performance. Sol Energy Mater Sol Cells 174:599–606

    CAS  Google Scholar 

  5. Zhou K, Wang H, Zhang Y et al (2016) An advanced technique to evaluate the electrochromic performances of NiO films by multi-cycle double-step potential chronocoulometry. J Electrochem Soc 163:H1033–H1040

    CAS  Google Scholar 

  6. Wang C, Dong G, Zhao Y et al (2020) Enhanced electrochromic performance on anodic nickel oxide inorganic device via lithium and aluminum co-doping. J Alloys Compd 821:153365

    CAS  Google Scholar 

  7. Cao F, Pan GX, Xia XH et al (2013) Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application. Electrochim Acta 111:86–91

    CAS  Google Scholar 

  8. Velevska J, Ristova M (2002) Electrochromic properties of NiOx prepared by low vacuum evaporation. Sol Energy Mater Sol Cells 73:131–139

    CAS  Google Scholar 

  9. Liao C-C (2012) Lithium-driven electrochromic properties of electrodeposited nickel hydroxide electrodes. Sol Energy Mater Sol Cells 99:26–30

    CAS  Google Scholar 

  10. Uplane MM, Mujawar SH, Inamdar AI et al (2007) Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Appl Surf Sci 253:9365–9371

    CAS  Google Scholar 

  11. Sonavane AC, Inamdar AI, Shinde PS et al (2010) Efficient electrochromic nickel oxide thin films by electrodeposition. J Alloys Compd 489:667–673

    CAS  Google Scholar 

  12. Dalavi DS, Devan RS, Patil RS et al (2013) Electrochromic performance of sol–gel deposited NiO thin film. Mater Lett 90:60–63

    CAS  Google Scholar 

  13. Tenent RC, Gillaspie DT, Miedaner A et al (2010) Fast-switching electrochromic Li + -doped NiO films by ultrasonic spray deposition. J Electrochem Soc 157:H318–H322

    CAS  Google Scholar 

  14. Zhang E, Tang Y, Zhang Y et al (2009) Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers. Mater Res Bull 44:1765–1770

    CAS  Google Scholar 

  15. Inamdar AI, Sonavane AC, Pawar SM et al (2011) Electrochromic and electrochemical properties of amorphous porous nickel hydroxide thin films. Appl Surf Sci 257:9606–9611

    CAS  Google Scholar 

  16. Pagnanelli F, Altimari P, Bellagamba M et al (2015) Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim Acta 155:228–235

    CAS  Google Scholar 

  17. Su C, Qiu M, An Y et al (2020) Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. J Mater Chem C 8:3010–3016

    CAS  Google Scholar 

  18. Cai G, Tu J, Gu C et al (2013) One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. J Mater Chem A 1:4286–4292

    CAS  Google Scholar 

  19. Li Q, Feng Z, Zhang J et al (2014) Pulse reverse electrodeposition and characterization of nanocrystalline zinc coatings. RSC Adv 4:52562–52570

    CAS  Google Scholar 

  20. Li Q, Feng Z, Liu L et al (2015) Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition. RSC Adv 5:12025–12033

    CAS  Google Scholar 

  21. Di Girolamo D, Matteocci F, Piccinni M et al (2020) Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells. Sol Energy Mater Sol Cells 205:110288

    Google Scholar 

  22. Rodzi SZF, Mohd Y (2012) The influence of deposition temperature on the electrodeposition of NiO films on ITO-glass substrate. In: 2012 IEEE symposium on humanities, science and engineering research, pp 531–535

  23. Quy VHV, Jo I-R, Kang S-H, Ahn K-S (2021) Amorphous-crystalline dual phase WO3 synthesized by pulsed-voltage electrodeposition and its application to electrochromic devices. J Ind Eng Chem 94:264–271

    CAS  Google Scholar 

  24. Park SH, Shin HS, Kim YH et al (2013) Template-free and filamentary growth of silver nanowires: application to anisotropic conductive transparent flexible electrodes. Nanoscale 5:1864–1869

    CAS  PubMed  Google Scholar 

  25. Cai G, Cui M, Kumar V et al (2016) Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem Sci 7:1373–1382

    CAS  PubMed  Google Scholar 

  26. Vijayakumar E, Yun Y-H, Quy VHV et al (2019) Development of tungsten trioxide using pulse and continuous electrodeposition and its properties in electrochromic devices. J Electrochem Soc 166:D86–D92

    CAS  Google Scholar 

  27. Zolotukhina EV, Bezverkhyy IS, Vorotyntsev MA (2014) One-stage periodical anodic-cathodic double pulse deposition of nanocomposite materials. application to Prussian Blue/polypyrrole film coated electrodes. Electrochim Acta 122:247–258

    CAS  Google Scholar 

  28. Mateos D, Valdez B, Castillo JR et al (2019) Synthesis of high purity nickel oxide by a modified sol-gel method. Ceram Int 45:11403–11407

    CAS  Google Scholar 

  29. Yuan X-C, Tang J-L, Zeng H-Z, Wei X-H (2014) Abnormal coexistence of unipolar, bipolar, and threshold resistive switching in an Al/NiO/ITO structure. Nanoscale Res Lett 9:268

    PubMed  PubMed Central  Google Scholar 

  30. Tian Y, Li Z, Dou S et al (2018) Facile preparation of aligned NiO nanotube arrays for electrochromic application. Surf Coat Technol 337:63–67

    CAS  Google Scholar 

  31. Xi Q, Gao G, Zhou H et al (2019) Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property. Appl Surf Sci 463:1107–1116

    CAS  Google Scholar 

  32. Dalavi DS, Devan RS, Patil RS et al (2012) Electrochromic properties of dandelion flower like nickel oxide thin films. J Mater Chem A 1:1035–1039

    Google Scholar 

  33. Koshtyal Y, Nazarov D, Ezhov I et al (2019) Atomic layer deposition of NiO to produce active material for thin-film lithium-ion batteries. Coatings 9:301

    CAS  Google Scholar 

  34. Liu A, Liu G, Zhu H et al (2016) Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl Phys Lett 108:233506

    Google Scholar 

  35. Diao C-C, Huang C-Y, Yang C-F, Wu C-C (2020) Morphological, optical, and electrical properties of P-type nickel oxide thin films by nonvacuum deposition. Nanomaterials 10:636

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang H, Li R, Li C et al (2019) Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater Horiz 6:571–579

    CAS  Google Scholar 

  37. Abe Y, Suzuki T, Kawamura M et al (2012) Electrochromic properties of NiOOH thin films prepared by reactive sputtering in an H2O atmosphere in various aqueous electrolytes. Sol Energy Mater Sol Cells 99:38–42

    CAS  Google Scholar 

  38. Zhang J, Cai G, Zhou D et al (2014) Co-doped NiO nanoflake array films with enhanced electrochromic properties. J Mater Chem C 2:7013–7021

    CAS  Google Scholar 

  39. Guo Q, Zhao X, Li Z et al (2020) A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chem Eng J 384:123370

    CAS  Google Scholar 

  40. Liu Q, Dong G, Xiao Y et al (2016) Electrolytes-relevant cyclic durability of nickel oxide thin films as an ion-storage layer in an all-solid-state complementary electrochromic device. Sol Energy Mater Sol Cells 157:844–852

    CAS  Google Scholar 

  41. Ren Y, Chim WK, Guo L et al (2013) The coloration and degradation mechanisms of electrochromic nickel oxide. Sol Energy Mater Sol Cells 116:83–88

    CAS  Google Scholar 

  42. Cai G, Wang X, Zhou D et al (2013) Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Adv 3:6896–6905

    CAS  Google Scholar 

  43. Pham NS, Seo YH, Park E et al (2020) Implementation of high-performance electrochromic device based on all-solution-fabricated Prussian blue and tungsten trioxide thin film. Electrochim Acta 353:136446

    CAS  Google Scholar 

  44. Pham NS, Seo YH, Park E et al (2020) Data on characterization and electrochemical analysis of zinc oxide and tungsten trioxide as counter electrodes for electrochromic devices. Data Brief 31:105891

    PubMed  PubMed Central  Google Scholar 

  45. Le VX, Lee H, Pham NS et al (2021) Stainless steel 304 needle electrode for precise glucose biosensor with high signal-to-noise ratio. Sens Actuators B 346:130552

    CAS  Google Scholar 

  46. Zhang B, Xu C, Xu G et al (2019) Amorphous titanium dioxide film with improved electrochromism in near-infrared region. Opt Mater 89:191–196

    CAS  Google Scholar 

  47. Zhao Y, Zhang X, Chen X et al (2020) Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances. ACS Sustain Chem Eng 8:11658–11666

    CAS  Google Scholar 

  48. Chen Y, Bi Z, Li X et al (2017) High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochim Acta 224:534–540

    CAS  Google Scholar 

  49. Bouessay I, Rougier A, Poizot P et al (2005) Electrochromic degradation in nickel oxide thin film: a self-discharge and dissolution phenomenon. Electrochim Acta 50:3737–3745

    CAS  Google Scholar 

  50. Azens A, Kullman L, Vaivars G et al (1998) Sputter-deposited nickel oxide for electrochromic applications. Solid State Ion 113–115:449–456

    Google Scholar 

  51. Green SV, Watanabe M, Oka N et al (2012) Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor. Thin Solid Films 520:3839–3842

    CAS  Google Scholar 

  52. Liu L, Yu Y, Yan C et al (2015) Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun 6:7260

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Nguyen Sy Pham or Vinh Xuan Le.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10800-023-01952-6"

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 908 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, N.S., Phan, P.T.Q. & Le, V.X. RETRACTED ARTICLE: Porous NiO via pulsed electrodeposition towards enhanced electrochromic properties. J Appl Electrochem 52, 1343–1351 (2022). https://doi.org/10.1007/s10800-022-01716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01716-8

Keywords

Navigation