Skip to main content
Log in

Improvement of performance stability of electrolytic copper foils by bi-component additives

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface roughness and mechanical strength are significant properties of copper foils for printed circuit boards. Stable performance is highly required for the copper foils across the whole roll (length of ~ 7000 m) in industrial manufacture. In this work, the main attention is focused on the performance stability of the obtained 18-μm copper foils by different additives. The available concentration range of saccharin sodium was expanded and the performance stability of copper foils was improved by the co-addition of hydroxyethyl cellulose or bis-(3-sulfopropyl)-disulfide. The copper foils prepared under the condition of bi-component additives remained low roughness and high tensile strength, due to the uniform surface microtopography related to the continuous high relative intensity of (220) crystal face varying with additive concentration. It is found that the change of the electrochemical reaction caused by the variation of the saccharin sodium concentration was weakened by the different adsorption behaviors of those introduced additives. The bi-component additives expanded the concentration of each additive and the stability of the copper foil products was improved as a result. It is advantageous to industrial applications for higher production efficiency, higher product quality, and lower production cost, brought by bi-component additives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chan PF, Ren RH, Wen SI, Chang HC, Dow WP (2017) Effects of additives and convection on Cu foil fabrication with a low surface roughness. J Electrochem Soc 164(9):D660–D665. https://doi.org/10.1149/2.0101712jes

    Article  CAS  Google Scholar 

  2. Song JM, Wang DS, Yeh CH, Lu WC, Tsou YS, Lin SC (2013) Texture and temperature dependence on the mechanical characteristics of copper electrodeposits. Mater Sci Eng A 559:655–664. https://doi.org/10.1016/j.msea.2012.09.006

    Article  CAS  Google Scholar 

  3. Rakov AV, De S, Koledintseva MY, Hinaga S, Drewniak JL, Stanley RJ (2015) Quantification of conductor surface roughness profiles in printed circuit boards. IEEE Trans Electromagn Compat 57(2):264–273. https://doi.org/10.1109/TEMC.2014.2375274

    Article  Google Scholar 

  4. Apakashev RA, Khazin ML, Valiev NG (2020) Effect of temperature on the structure and properties of fine-grain copper foil. Metal Sci Heat Treat 61(11–12):787–791. https://doi.org/10.1007/s11041-020-00501-8

    Article  CAS  Google Scholar 

  5. Lai ZQ, Wang SX, Wang C, Hong Y, Zhou GY, Chen YM, He W, Peng YQ, Xiao DJ (2018) A comparison of typical additives for copper electroplating based on theoretical computation. Comput Mater Sci 147:95–102. https://doi.org/10.1016/j.commatsci.2017.11.049

    Article  CAS  Google Scholar 

  6. Jo YE, Yu DY, Cho SK (2020) Revealing the inhibition effect of quaternary ammonium cations on Cu electrodeposition. J Appl Electrochem 50(2):245–253. https://doi.org/10.1007/s10800-019-01381-4

    Article  CAS  Google Scholar 

  7. Bahramian A, Eyraud M, Vacandio F, Knauth P (2018) Improving the corrosion properties of amorphous Ni–P thin films using different additives. Surf Coat Technol 345:40–52. https://doi.org/10.1016/j.surfcoat.2018.03.075

    Article  CAS  Google Scholar 

  8. Lai ZQ, Wang C, Huang YZ, Chen YM, Wang SX, Hong Y, Zhou GY, He W, Su XH, Sun YK, Tao YG, Lu XY (2020) Temperature-dependent inhibition of PEG in acid copper plating: theoretical analysis and experiment evidence. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.100973

    Article  Google Scholar 

  9. Woo TG, Park IS, Lee HW, Lee CR, Seol KW (2007) The effect of hydroxy ethyl cellulose (HEC) and chloride ions on the surface morphology and mechanical characteristics during copper electrodeposition. Mater Trans 48(7):1913–1918. https://doi.org/10.2320/matertrans.MRA2006326

    Article  CAS  Google Scholar 

  10. Wang FL, Zhou K, Zhang QL, Le YP, Liu W, Wang Y, Wang F (2019) Effect of molecular weight and concentration of polyethylene glycol on through-silicon via filling by copper. Microelectron Eng. https://doi.org/10.1016/j.mee.2019.111003

    Article  Google Scholar 

  11. Liu LL, Bu YQ, Sun Y, Pan JF, Liu JB, Ma JE, Qiu L, Fang YT (2021) Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils. J Mater Sci Technol 74:237–245. https://doi.org/10.1016/j.jmst.2020.10.019

    Article  CAS  Google Scholar 

  12. Lin CC, Yen CH, Lin SC, Hu CC, Dow WP (2017) Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils. J Electrochem Soc 164(13):D810–D817. https://doi.org/10.1149/2.0471713jes

    Article  CAS  Google Scholar 

  13. Chang TR, Jin Y, Wen L, Zhang CS, Leygraf C, Wallinder IO, Zhang JP (2016) Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochim Acta 211:245–254. https://doi.org/10.1016/j.electacta.2016.06.051

    Article  CAS  Google Scholar 

  14. Hebert KR (2001) Analysis of current-potential hysteresis during electrodeposition of copper with additives. J Electrochem Soc 148(11):C726–C732. https://doi.org/10.1149/1.1408634

    Article  CAS  Google Scholar 

  15. Huynh TMT, Weiss F, Hai NTM, Reckien W, Bredow T, Fluegel A, Arnold M, Mayer D, Keller H, Broekmann P (2013) On the role of halides and thiols in additive-assisted copper electroplating. Electrochim Acta 89:537–548. https://doi.org/10.1016/j.electacta.2012.10.152

    Article  CAS  Google Scholar 

  16. Walker ML, Richter LJ, Moffat TP (2006) Competitive adsorption of PEG, Cl-, and SPS/MPS on Cu: an in situ ellipsometric study. J Electrochem Soc 153(8):C557–C561. https://doi.org/10.1149/1.2206999

    Article  CAS  Google Scholar 

  17. Dow WP, Huang HS, Yen MY, Huang HC (2005) Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. J Electrochem Soc 152(6):C425–C434. https://doi.org/10.1149/1.1901670

    Article  CAS  Google Scholar 

  18. Kim MJ, Seo Y, Kim HC, Lee Y, Choe S, Kim YG, Cho SK, Kim JJ (2015) Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums. Electrochim Acta 163:174–181. https://doi.org/10.1016/j.electacta.2015.02.173

    Article  CAS  Google Scholar 

  19. Woo TG, Park IS, Seol KW (2013) Effect of additives on the elongation and surface properties of copper foils. Electron Mater Lett 9(3):341–345. https://doi.org/10.1007/s13391-012-2125-8

    Article  CAS  Google Scholar 

  20. Tang MX, Zhang ST, Qiang YJ, Chen SJ, Luo L, Gao JY, Feng L, Qin ZJ (2017) 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper. RSC Adv 7(64):40342–40353. https://doi.org/10.1039/c7ra06857c

    Article  CAS  Google Scholar 

  21. Rongtao J (2010) Production of electrolytic copper foil. Central South University Press, Changsha

    Google Scholar 

  22. Walsh FC (1991) The overall rates of electrode-reactions—Faraday laws of electrolysis. Trans Inst Metal Finish 69:155–157. https://doi.org/10.1080/00202967.1991.11870914

    Article  CAS  Google Scholar 

  23. JCPDS International Center for Diffraction Data, Swarthmore (1997) Pennsylvania, U. S. A., copper file no. 04-0836

  24. Korai Y, Okada G, Yamazoe N, Seiyama T (1978) Morphology and crystal-growth of copper-deposits on a copper(110) electrode. Surf Technol 7(4):331–343. https://doi.org/10.1016/0376-4583(78)90075-4

    Article  CAS  Google Scholar 

  25. Zhou S (1987) Electrodeposition of metal—principle and methods. Scientific and Technical Publishers, Shanghai

    Google Scholar 

  26. Szurgot MJ, Prywer J (1991) Growth velocities and disappearance of faces of crystals. Cryst Res Technol 26(2):147–153. https://doi.org/10.1002/crat.2170260202

    Article  CAS  Google Scholar 

  27. Damjanovic A, Setty T, Bockris J (1966) Effect of crystal plane on the mechanism and the kinetics of copper electrocrystallization. J Electrochem Soc 113:429–440. https://doi.org/10.1149/1.2423989

    Article  CAS  Google Scholar 

  28. Kondo K, Murakami H (2004) Crystal growth of electrolytic Cu foil. J Electrochem Soc 151(7):C514–C518. https://doi.org/10.1149/1.1756883

    Article  CAS  Google Scholar 

  29. Manu R, Jayakrishnan S (2009) Influence of additives and the effect of aging in modifying surface topography of electrodeposited copper. J Electrochem Soc 156(7):D215–D221. https://doi.org/10.1149/1.3121212

    Article  CAS  Google Scholar 

  30. Yu WY, Lin CY, Li QY, Zhang JQ, Yang PX, An MZ (2021) A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current. J Appl Electrochem 51(3):489–501. https://doi.org/10.1007/s10800-020-01509-x

    Article  CAS  Google Scholar 

  31. Grosskreutz JC, Benson DK (1968) The effects of the surface on the mechanical properties of metals. In: Burke JJ, Reed NL, Weiss V (eds) Surfaces and interfaces II: physical and mechanical properties. Springer, Boston, pp 61–94

    Chapter  Google Scholar 

  32. Al-Qureshi HA, Klein AN, Fredel MC (2005) Grain size and surface roughness effect on the instability strains in sheet metal stretching. J Mater Process Technol 170(1–2):204–210. https://doi.org/10.1016/j.jmatprotec.2005.04.116

    Article  CAS  Google Scholar 

  33. Suh CH, Jung YC, Kim YS (2010) Effects of thickness and surface roughness on mechanical properties of aluminum sheets. J Mech Sci Technol 24(10):2091–2098. https://doi.org/10.1007/s12206-010-0707-7

    Article  Google Scholar 

  34. DeBeuckelaer A (1996) A closer examination on some parametric alternatives to the ANOVA F-test. Stat Papers 37(4):291–305. https://doi.org/10.1007/BF02926110

    Article  Google Scholar 

  35. Xu M, Fralick D, Zheng JZ, Wang B, Tu XM, Feng C (2017) The differences and similarities between two-sample T-test and paired T-test. Shanghai Arch Psychiatry 29(3):184–188. https://doi.org/10.11919/j.issn.1002-0829.217070

    Article  PubMed  Google Scholar 

  36. Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47(18):2901–2912. https://doi.org/10.1016/S0013-4686(02)00161-5

    Article  CAS  Google Scholar 

  37. Majidi MR, Asadpour-Zeynali K, Hafezi B (2009) Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochim Acta 54(3):1119–1126. https://doi.org/10.1016/j.electacta.2008.08.035

    Article  CAS  Google Scholar 

  38. Imai YJ, Kamada, (2005) Vibrational spectra of saccharin nitranion and its orientation on the surface of silver metal particles. Spectrochim Acta Part A 61(4):711–715. https://doi.org/10.1016/j.saa.2004.04.029

    Article  CAS  Google Scholar 

  39. Kwon HAA, Gewirth (2007) SERS examination of saccharin adsorption on Ni electrodes. J Electrochem Soc 154(11):D577–D583. https://doi.org/10.1149/1.2773629

    Article  CAS  Google Scholar 

  40. Shirazi S, Bahrololoom ME, Shariat MH (2016) The role of functional groups of saccharin in electrodeposition of nanocrystalline nickel. Surf Eng Appl Electrochem 52(5):434–442. https://doi.org/10.3103/S1068375516050112

    Article  Google Scholar 

  41. Dow WP, Chiu YD, Yen MY (2009) Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide. J Electrochem Soc 156(4):D155–D167. https://doi.org/10.1149/1.3078407

    Article  CAS  Google Scholar 

  42. Yoon Y, Kim H, Kim TY, Lee KH, Choe S, Kim JJ (2020) Selective determination of PEG-PPG concentration in Cu plating bath with cyclic voltammetry stripping using iodide ion. Electrochim Acta. https://doi.org/10.1016/j.electacta.2020.135916

    Article  Google Scholar 

  43. Chen TC, Tsai YL, Hsu CF, Dow WP, Hashimoto Y (2016) Effects of brighteners in a copper plating bath on throwing power and thermal reliability of plated through holes. Electrochim Acta 212:572–582. https://doi.org/10.1016/j.electacta.2016.07.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51827810 and 51977193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Pan, J., Liu, L. et al. Improvement of performance stability of electrolytic copper foils by bi-component additives. J Appl Electrochem 52, 1219–1230 (2022). https://doi.org/10.1007/s10800-022-01707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01707-9

Keywords

Navigation