Audebert F, Galano M, Saporiti F (2014) The use of Nb in rapid solidified Al alloys and composites. J. Alloys Compounds 615:S621–S626. https://doi.org/10.1016/j.jallcom.2013.12.129
CAS
Article
Google Scholar
Schwarz H-G, Briem S, Zapp P (2001) Future carbon dioxide emissions in the global material flow of primary aluminium. Energy 26(8):775–795. https://doi.org/10.1016/S0360-5442(01)00032-9
CAS
Article
Google Scholar
Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52(5):818–824. https://doi.org/10.2320/matertrans.L-MZ201132
CAS
Article
Google Scholar
Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum–magnesium alloys. J Mater. Process Technol 207(1–3):1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057
CAS
Article
Google Scholar
Rambabu P, Prasad NE, Kutumbarao VV, Wanhill RJH (2017) Aluminium alloys for aerospace applications. In: Prasad NE, Wanhill RJH (eds) Aerospace materials and material technologies. Springer, Singapore, pp 29–52
Chapter
Google Scholar
K. A. Yasakau, M. L. Zheludkevich, M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. In Smart corrosion protection, in Intermetallic Matrix Composites, Elsevier, 2018, p. 425‑462.
Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2018) Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3128-x
Article
Google Scholar
Shibli SMA, Jabeera B, Manu R (2007) Development of high performance aluminium alloy sacrificial anodes reinforced with metal oxides. Mater Lett 61(14–15):3000–3004. https://doi.org/10.1016/j.matlet.2006.10.062
CAS
Article
Google Scholar
Pramod SL, Bakshi SR, Murty BS (2015) Aluminum-based cast in situ composites: a review. J Mater Eng Perform 24(6):2185–2207. https://doi.org/10.1007/s11665-015-1424-2
CAS
Article
Google Scholar
Di Franco F, Santamaria M, Di Quarto F, La Mantia F, de Sá AI, Rangel CM (2013) Dielectric properties of Al-Nb amorphous mixed oxides. ECS J State Science Technol 2(11):205–210. https://doi.org/10.1149/2.012311jss
CAS
Article
Google Scholar
Ghandvar H, Idris MH, Asma T, Bakar A, Nafari A, Ahmad N (2020) Microstructural characterization, solidification characteristics and tensile properties of Al 15%Mg2Si–x(Gd–Sb) in-situ composite. J Mater Res Technol 9(3):3272–3291
CAS
Article
Google Scholar
Abboud J, Mazumder J (2020) Developing of nano sized fibrous eutectic silicon in hypereutectic Al–Si alloy by laser remelting. Sci Rep 10:12090. https://doi.org/10.1038/s41598-020-69072-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Saidman SB, Garcia SG, Bessone JB (1995) Electrochemical behaviour of Al-In alloys in chloride solutions. J Appl Electrochem. https://doi.org/10.1007/BF00262964
Article
Google Scholar
D. R. Salinas, Infuence of alloying elements and microstructure on aluminium sacri®cial anode performance: case of Al±Zn, p. 9.
Shayeb HAE (2001) Effect of gallium ions on the electrochemical behaviour of Al, Al±Sn, Al±Zn and Al±Zn±Sn alloys in chloride solutions. Corr Sci 43(3):643–654
Article
Google Scholar
Gudić S, Smoljko I, Kliškić M (2010) Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution. Mater Chem Phys 121(3):561–566. https://doi.org/10.1016/j.matchemphys.2010.02.040
CAS
Article
Google Scholar
Mostaan H, Karimzadeh F, Abbasi MH (2012) Thermodynamic analysis of nanocrystalline and amorphous phase formation in Nb–Al system during mechanical alloying. Powder Metallurgy 55(2):142–147. https://doi.org/10.1179/1743290111Y.0000000018
CAS
Article
Google Scholar
Gauthier V, Bernard F, Gaffet E, Vrel D, Gailhanou M, Larpin JP (2002) Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction. Intermetallics 10(4):377–389. https://doi.org/10.1016/S0966-9795(02)00010-9
CAS
Article
Google Scholar
Almeida A, Petrov P, Nogueira I, Vilar R (2001) Structure and properties of Al–Nb alloys produced by laser surface alloying. Mater Sci Eng A 303(1–2):273–280. https://doi.org/10.1016/S0921-5093(00)01838-4
Article
Google Scholar
Mareci D, Popa IM, Ungureanu G, Aelenei D, MirzaRosca JC (2006) Electrochemical response of aluminum in contact with beer. Sci Study Res-Chem Chem Eng Biotechnol Food Ind 7(4):769–778
CAS
Google Scholar
Rana RS, Purohit R, Das S (2012) Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum. Alloy Composites 2(6):8
Google Scholar
Guzowski MM, Sigworth GK, Sentner DA (1987) The role of boron in the grain. MTA 18(4):603–619. https://doi.org/10.1007/BF02649476
Article
Google Scholar
Chen Y, Pan Y, Lu T, Tao S, Wu J (2014) Effects of combinative addition of lanthanum and boron on grain refinement of Al–Si casting alloys. Mater Design 64:423–426. https://doi.org/10.1016/j.matdes.2014.07.068
CAS
Article
Google Scholar
Yuying W, Xiangfa L, Xiufang B (2007) Effect of boron on the microstructure of near-eutectic Al–Si alloys. Mater Characterization 58(2):205–209. https://doi.org/10.1016/j.matchar.2006.04.009
CAS
Article
Google Scholar
Sarkar R, Ghosal P, Muraleedharan K, Nandy TK, Ray KK (2011) Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15–3 alloy. Mater Sci Eng A 528(13–14):4819–4829. https://doi.org/10.1016/j.msea.2011.03.014
CAS
Article
Google Scholar
Hernandez-Rodriguez M, Laverde-Cataño D, Lozano D, Martinez-Cazares G, Bedolla-Gil Y (2019) Influence of boron addition on the microstructure and the corrosion resistance of CoCrMo alloy. Metals 9(3):307. https://doi.org/10.3390/met9030307
CAS
Article
Google Scholar
Wang M, Hu K, Liu G, Liu X (2020) Synchronous improvement of electrical and mechanical performance of A356 alloy reinforced by boron coupling nano-AlNp. J Alloys Compounds 814:152217. https://doi.org/10.1016/j.jallcom.2019.152217
CAS
Article
Google Scholar
Cui X, Wu Y, Zhang G, Liu Y, Liu X (2017) Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys. Composites B Eng 110:381–387. https://doi.org/10.1016/j.compositesb.2016.11.042
CAS
Article
Google Scholar
Cui X, Wu Y, Liu X, Zhao Q, Zhang G (2015) Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum. Mater Design 86:397–403. https://doi.org/10.1016/j.matdes.2015.06.149
CAS
Article
Google Scholar
Zhu J, Kamiya A, Yamada T, Shi W, Naganuma K (2003) Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys. Mater Sci Eng A 339(1–2):53–62. https://doi.org/10.1016/S0921-5093(02)00102-8
Article
Google Scholar
Yan BC, Zhang J, Lou LH (2008) Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy. Mater Sci Eng A 474(1–2):39–47. https://doi.org/10.1016/j.msea.2007.05.082
CAS
Article
Google Scholar
Baetzner C, Beuers J, Hoch M, Korniyenko K (2009) Aluminium—Niobium—Silicon. LandoltBörnstein. https://doi.org/10.1007/978-3-540-88053-0_12
Article
Google Scholar
El-Aziz KA, Saber D, Sallam HE-DM (2015) Wear and corrosion behavior of Al–Si matrix composite reinforced with alumina. J Bio TriboCorros 1(1):5. https://doi.org/10.1007/s40735-014-0005-5
Article
Google Scholar
Osório WR, Goulart PR, Garcia A (2008) Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al–Si alloys. Mater Lett 62(3):365–369. https://doi.org/10.1016/j.matlet.2007.05.051
CAS
Article
Google Scholar
Bandil K et al (2019) Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J Composite Mater 53(28–30):4215–4223. https://doi.org/10.1177/0021998319856679
CAS
Article
Google Scholar
Osório WR, Cheung N, Spinelli JE, Goulart PR, Garcia A (2007) The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al-Si hypoeutectic alloys. J Solid State Electrochem 11(10):1421–1427. https://doi.org/10.1007/s10008-007-0300-x
CAS
Article
Google Scholar
Revilla RI, De Graeve I (2018) Influence of Si content on the microstructure and corrosion behavior of additive manufactured Al-Si alloys. J. Electrochem. Soc. 165(13):C926–C932. https://doi.org/10.1149/2.0101814jes
CAS
Article
Google Scholar
Kumar V, Mehdi H, Kumar A (2015) Effect of silicon content on the mechanical properties of aluminum. Alloy 02(04):6
Google Scholar
Sasikumar Y, Indira K, Rajendran N (2019) Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J Bio TriboCorros 5(2):36. https://doi.org/10.1007/s40735-019-0229-5
Article
Google Scholar
Sherif E-SM, Ammar HR, Khalil KA (2014) Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater. Appl Surf Sci 301:142–148. https://doi.org/10.1016/j.apsusc.2014.02.019
CAS
Article
Google Scholar
Yasakau KA, Zheludkevich ML, Ferreira MGS (2018) Role of intermetallics in corrosion of aluminum alloys. In: Mitra R (ed) Smart corrosion protection. Woodhead Publishing, Intermetallic Matrix Composites, pp 425–462
Google Scholar
Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Metallkd 97(3):246
CAS
Article
Google Scholar
Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TY (2008) The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti. J. Alloys Compd. 465:64
CAS
Article
Google Scholar
Fan QH, Zhao YM, Huang J, Ouyang LS, Kuang Q (2012) Large-scale synthesis of aluminum diboride nanowires by Ni(NO3)2 catalyst. J Cryst Growth 346:75–78
CAS
Article
Google Scholar
Djurdjević MB, Manasijević S, Odanović Z, Dolić N (2013) Calculation of liquidus temperature for aluminum and magnesium alloys applying method of equivalency. Adv Mater Sci Eng 2013:1–8
Article
Google Scholar
Wang S, Xiazhang MF, Wang LJ, Su X (2018) J Mater Process Technol 255:105–109
CAS
Article
Google Scholar
Prach O, Trudonoshyn O, Puchnin M (2017) Effects of chemical composition on mechanical properties of Al-Mg-Si-Mn based alloys. Mater Eng—Materiálové inžinierstvo 24:11–20
CAS
Google Scholar
Mondolfo LF (1976) Aluminum alloys: structure and properties. Butterworths, London, pp 312–53
Google Scholar
Esquivel J, Murdoch HA, Darling KA, Gupta RK (2018) Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Mater Res Lett 6(1):79–83. https://doi.org/10.1080/21663831.2017.1396262
CAS
Article
Google Scholar
Pride ST, Scully JR, Hudson JL (1994) Metastable pitting of aluminum and criteria for the transition to stable pit growth. J Electrochem Soc 141:3028–3040
CAS
Article
Google Scholar
Palcut M, Priputen P, Šalgó K, Janovec J (2015) Phase constitution and corrosion resistance of Al-Co alloys. Mater Chem Phys 166:95–104
CAS
Article
Google Scholar
Debili MY, Sassane N, Boukhris N (2017) Structure and corrosion behavior of Al-Co-Ti alloy system. Anti Corros Methods Mater 64:443–451
Article
Google Scholar
Shi YZ, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK (2017) Corrosion of AlxCoCrFeNi high-entropy alloys: Al content and potential scan-rate dependent pitting behavior. Corros Sci 119:33
CAS
Article
Google Scholar
Singh D, Dhayal V, Agarwal DC (2019) Surf Eng Appl Electrochem 55(4):436–442
Article
Google Scholar
A. Toloei, V. Stoilov, D. Northwood. Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition IMECE 2013 November 13–21, 2013, San Diego, California, USA.
Chen Y, Jepson WP (1999) EIS measurement for corrosion monitoring under multiphase flow conditions. Electrochim Acta 44(24):4453–4464
CAS
Article
Google Scholar
Prakashaiah, B. G., Corros Sci (2018). https://doi.org/10.1016/j.corsci.2018.03.021.
Arthanari S, Jang JC, Shin KS (2019) J Alloys Compd 783:494–502
CAS
Article
Google Scholar
Seikh AH, Baig M, Ammar HR, Alam MA (2016) The influence of transition metals addition on the corrosion resistance of nanocrystalline Al alloys produced by mechanical alloying. Metals 6:140
Article
Google Scholar
Morquech CPC et al (2012) Int. J. Electrochem. Sci. 7:1125–1133
Google Scholar
Liyana NK, Fazal MA, Haseeb ASMA (2018) Polarization and EIS studies to evaluate the effect of aluminum concentration on the corrosion behavior of SAC105 solder alloy. Mater Sci-Poland 35(4):694–701
Article
Google Scholar