Skip to main content
Log in

Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel nitrite electrochemical biosensor is constructed by glassy carbon electrodes (GC) coated by chloroperoxidase (CPO) -Au nanoparticles-MoS2 nanoflowers in the presence of ionic liquid, 1-ethyl-3-methylimidazolium bromide (EMB-IL). Au-MoS2 nanoflowers modified nanocomposites are synthesized using sodium carboxymethyl cellulose as reducing agent and stabilizer. The EMB-IL can effectively promote direct electron transfer between CPO and electrode surface without redox mediator. Herein, the surface concentration of CPO on the electrode surface is 1.36 × 10–10 mol cm−2, and the electron transfer coefficient and the rate constant of CPO at electrode surface are 0.87 and 2.03 s−1, respectively. The proposed nitrite electrochemical biosensor shows a wide linear range, low detection limit, and high sensitivity. The biosensor was applied to the determination of nitrite in pickled cabbage with a good accuracy and recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu H, Guo K, Lv J et al (2017) A novel nitrite biosensor based on the direct electrochemistry of horseradish peroxidase immobilized on porous Co3O4 nanosheets and reduced graphene oxide composite modified electrode. Sens Actuators B Chem 238:249–256. https://doi.org/10.1016/j.snb.2016.07.073

    Article  CAS  Google Scholar 

  2. Ikhsan NI, Rameshkumar P, Pandikumar A et al (2015) Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 144:908–914. https://doi.org/10.1016/j.talanta.2015.07.050

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Li M, Wang C et al (2019) Highly sensitive and selective method for detection of trace amounts of nitrite in aquaculture water by SERRS coupled with diazo reaction. Sensors Actuators, B Chem 297:126757. https://doi.org/10.1016/j.snb.2019.126757

    Article  CAS  Google Scholar 

  4. Annalakshmi M, Kumaravel S, Chen SM et al (2020) A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens Actuators B Chem 305:127387. https://doi.org/10.1016/j.snb.2019.127387

    Article  CAS  Google Scholar 

  5. Hu AL, Liu YH, Deng HH et al (2014) Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron 61:374–378. https://doi.org/10.1016/j.bios.2014.05.048

    Article  CAS  PubMed  Google Scholar 

  6. Zhao X, Zhao S, Li S et al (2021) CoO nanotubes loaded on graphene and modified with porphyrin moieties for colorimetric sensing of dopamine. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.1c01205

    Article  Google Scholar 

  7. Li XR, Zhou YG (2021) Electrochemical detection of circulating tumor cells: a mini review. Electrochem Commun 124:106949. https://doi.org/10.1016/j.elecom.2021.106949

    Article  CAS  Google Scholar 

  8. Deng HH, Wu GW, He D et al (2015) Fenton reaction-mediated fluorescence quenching of N-acetyl-l-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst 140:7650–7656. https://doi.org/10.1039/c5an01284h

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JH, Shen Q, Zhou YG (2021) Quantification of tumor protein biomarkers from lung patient serum using nanoimpact electrochemistry. ACS Sens 6:2320–2329. https://doi.org/10.1021/acssensors.1c00361

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Huang X, Lin K (2019) Multiple catalytic roles of chloroperoxidase in the transformation of phenol: products and pathways. Ecotoxicol Environ Saf 179:96–103. https://doi.org/10.1016/j.ecoenv.2019.04.061

    Article  CAS  PubMed  Google Scholar 

  11. Guo J, Yang L, Zhao C et al (2021) Constructing a photo-enzymatic cascade reaction and itsin situmonitoring: enzymes hierarchically trapped in titania meso-porous MOFs as a new photosynthesis platform. J Mater Chem A 9:14911–14919. https://doi.org/10.1039/d1ta04009j

    Article  CAS  Google Scholar 

  12. He J, Zhang Y, Yuan Q, Liang H (2019) Catalytic activity and application of immobilized chloroperoxidase by biometric magnetic nanoparticles. Ind Eng Chem Res 58:3555–3560. https://doi.org/10.1021/acs.iecr.8b03910

    Article  CAS  Google Scholar 

  13. Da GZ, Liu HF, Li CY, Song YY (2013) Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. Chem Commun 49:774–776. https://doi.org/10.1039/c2cc38183d

    Article  CAS  Google Scholar 

  14. Da GZ, Guan FF, Li CY et al (2013) Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a HRP tagged antibody-Au nanoparticles as probe. Biosens Bioelectron 41:771–775. https://doi.org/10.1016/j.bios.2012.10.006

    Article  CAS  Google Scholar 

  15. Undiano E, Roman R, Miranda-Molina A, Ayala M (2021) Halogenation of estrogens catalysed by a fungal chloroperoxidase. Nat Prod Res. https://doi.org/10.1080/14786419.2021.1925269

    Article  PubMed  Google Scholar 

  16. García-Zamora JL, Santacruz-Vázquez V, Valera-Pérez MÁ et al (2019) Oxidation of flame retardant tetrabromobisphenol a by a biocatalytic nanofiber of chloroperoxidase. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16244917

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid. Structure 3:1367–1378. https://doi.org/10.1016/S0969-2126(01)00274-X

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Hao J (2016) Recent advances in ionic liquid-based electrochemical biosensors. Sci Bull 61:1281–1295. https://doi.org/10.1007/s11434-016-1151-6

    Article  CAS  Google Scholar 

  19. Suo H, Xu L, Xue Y et al (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: improvement of catalytic performance. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115914

    Article  PubMed  Google Scholar 

  20. Fan Y, Dong X, Zhong Y et al (2016) Effects of ionic liquids on the hydrolysis of casein by lumbrokinase. Biochem Eng J 109:35–42. https://doi.org/10.1016/j.bej.2015.12.020

    Article  CAS  Google Scholar 

  21. Mai NL, Koo YM (2019) Enhanced enzyme-catalyzed synthesis of L-methionine with ionic liquid additives. Process Biochem 77:31–36. https://doi.org/10.1016/j.procbio.2018.11.020

    Article  CAS  Google Scholar 

  22. Barron CC, Sponagle BJD, Arivalagan P, D’Cunha GB (2017) Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase. Enzyme Microb Technol 96:151–156. https://doi.org/10.1016/j.enzmictec.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  23. Nemestóthy N, Bakonyi P, Németh Z, Bélafi-Bakó K (2018) Evaluation of pectin-reinforced supported liquid membranes containing carbonic anhydrase: the role of ionic liquid on enzyme stability and CO2 separation performance. J CO2 Util 24:59–63

    Article  Google Scholar 

  24. Wu J, Liu C, Jiang Y et al (2010) Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. Catal Commun 11:727–731. https://doi.org/10.1016/j.catcom.2010.02.003

    Article  CAS  Google Scholar 

  25. Suo H, Gao Z, Xu L et al (2019) Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater Sci Eng C 96:356–364. https://doi.org/10.1016/j.msec.2018.11.041

    Article  CAS  Google Scholar 

  26. Kato K, Kawachi Y, Nakamura H (2014) Silica-enzyme-ionic liquid composites for improved enzymatic activity. J Asian Ceram Soc 2:33–40. https://doi.org/10.1016/j.jascer.2013.12.004

    Article  Google Scholar 

  27. Zou B, Song C, Xu X et al (2014) Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials. Appl Surf Sci 311:62–67. https://doi.org/10.1016/j.apsusc.2014.04.210

    Article  CAS  Google Scholar 

  28. Su S, Han X, Lu Z et al (2017) Facile synthesis of a MoS2–prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl Mater Interfaces 9:12773–12781. https://doi.org/10.1021/acsami.7b01141

    Article  CAS  PubMed  Google Scholar 

  29. Jeong N, Kim H, Kim W et al (2020) Direct synthesis, characterization, and reverse electrodialysis applications of MoS2 thin film on aluminum foil. Mater Charact 164:110361. https://doi.org/10.1016/j.matchar.2020.110361

    Article  CAS  Google Scholar 

  30. Zhang P, Xiang H, Tao L et al (2019) Chemically activated MoS2 for efficient hydrogen production. Nano Energy 57:535–541. https://doi.org/10.1016/j.nanoen.2018.12.045

    Article  CAS  Google Scholar 

  31. Zhang B, Zhang Z, Kapar S et al (2019) Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via pickering emulsion polymerization. ACS Sustain Chem Eng 7:17756–17767. https://doi.org/10.1021/acssuschemeng.9b04134

    Article  CAS  Google Scholar 

  32. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 89:56–71. https://doi.org/10.1016/j.bios.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Zhang H, Huang C et al (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites. Biosens Bioelectron 89:461–467. https://doi.org/10.1016/j.bios.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  34. Van Tuan D, Thuy Ngan DT, Thuy NT et al (2020) Effect of nanostructured MoS2 morphology on the glucose sensing of electrochemical biosensors. Curr Appl Phys 20:1090–1096. https://doi.org/10.1016/j.cap.2020.06.027

    Article  Google Scholar 

  35. Zhang S, Tang Y, Chen Y, Zheng J (2019) Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J Electroanal Chem 839:195–201. https://doi.org/10.1016/j.jelechem.2019.03.036

    Article  CAS  Google Scholar 

  36. Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241:1769–1777. https://doi.org/10.1016/S0021-9258(18)96702-5

    Article  CAS  PubMed  Google Scholar 

  37. Xiao L, Ding Y, Zhai Q et al (2019) Enzymatic biosensor for hydrogen peroxide based on the direct electron transfer on MWCNTs/IL/CPO-GC: the dual function of ionic liquids. J Electrochem Soc 166:G67–G74. https://doi.org/10.1149/2.0541908jes

    Article  CAS  Google Scholar 

  38. Das R, Mishra H, Srivastava A, Kayastha AM (2017) Covalent immobilization of Β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem Eng J 328:215–227. https://doi.org/10.1016/j.cej.2017.07.019

    Article  CAS  Google Scholar 

  39. Nie W, Wang Q, Yang X et al (2017) High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Anal Chim Acta 993:55–62. https://doi.org/10.1016/j.aca.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  40. Shu Y, Zhang W, Cai H et al (2019) Expanding the interlayers of molybdenum disulfide toward the highly sensitive sensing of hydrogen peroxide. Nanoscale 11:6644–6653. https://doi.org/10.1039/c9nr00333a

    Article  CAS  PubMed  Google Scholar 

  41. Qiu H, Wang M, Li L et al (2018) Hierarchical MoS2-microspheres decorated with 3D AuNPs arrays for high-efficiency SERS sensing. Sens Actuators B Chem 255:1407–1414. https://doi.org/10.1016/j.snb.2017.08.127

    Article  CAS  Google Scholar 

  42. Mani V, Govindasamy M, Chen SM et al (2017) Core-shell heterostructured multiwalled carbon nanotubes@reduced graphene oxide nanoribbons/ chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-12050-x

    Article  CAS  Google Scholar 

  43. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  44. Huang H, Hu N, Zeng Y, Zhou G (2002) Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem 308:141–151. https://doi.org/10.1016/S0003-2697(02)00242-7

    Article  CAS  PubMed  Google Scholar 

  45. Baghayeri M, Nazarzadeh Zare E, Mansour Lakouraj M (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine) @Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265. https://doi.org/10.1016/j.bios.2013.12.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21873061) and Fundamental Research Funds for the Central Universities (2021CBLY003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Chen or Yucheng Jiang.

Ethics declarations

Conflict of interest

The authors of the manuscript declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., He, M., Xiao, L. et al. Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC. J Appl Electrochem 52, 979–987 (2022). https://doi.org/10.1007/s10800-022-01689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01689-8

Keywords

Navigation