Skip to main content
Log in

Electrochemical microRNA detection based on catalytic deposition of G-quadruplex DNAzyme in nanochannels

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Abnormal expression and functioning of microRNAs in the immune system are frequently linked to various cancers. Our previous work demonstrated a universal, label-free, and reliable microRNA detection platform based on the nanochannels-based recognition interface and electrode-based sensing interface. Herein, the strategy of G-quadruplex DNAzyme-catalyzed deposition was introduced into the nanochannels to improve the detection sensitivity of the platform. G-quadruplex DNAzyme could catalyze the oxidation of 4-chloro-1-naphthol to produce insoluble precipitates into the nanochannels which amplified the effect of the hybridization reaction between the capture probe and the target to the mass transport of the redox probe through the recognition interface. Then, a porous carbon nanofibers-modified electrode was applied to further amplify the monitoring sensitivity of the sensing interface to the concentration change of the redox probe methylene blue. Thereby, sensitive electrochemical detection of microRNA-21 was acquired. The biosensing platform exhibited a broad linear range of 100 aM to 1 nM for microRNA-21, with a low detection limit of 40 aM. What is more, the selective and reproducible platform provided an alternative technique for the PCR-free determination of microRNA in serum and tumor cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80(7):2319–2325. https://doi.org/10.1021/ac702577a

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Wang Y, Fricke BL, Gu L-Q (2014) Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 8(4):3444–3450. https://doi.org/10.1021/nn406339n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan L-X, Huang X-F, Shao Q, Huang M-Y, Deng L, Wu Q-L, Zeng Y-X, Shao J-Y (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360. https://doi.org/10.1261/rna.1034808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee J-W, Choi CH, Choi J-J, Zhang L, Zhu A, Tian Y (2008) Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542. https://doi.org/10.1158/1078-0432.CCR-07-1231

    Article  CAS  PubMed  Google Scholar 

  5. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. https://doi.org/10.1158/0008-5472.CAN-05-0137

    Article  CAS  PubMed  Google Scholar 

  6. Nossier AI, Abdelzaher H, Matboli ES (2018) Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles. Microchim Acta 185:236. https://doi.org/10.1007/s00604-018-2767-9

    Article  CAS  Google Scholar 

  7. Mohammed YE, Mohamed AS, Hiromi M, Sherif AE-S (2018) One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosens Bioelectron 109:237–245. https://doi.org/10.1016/j.bios.2018.03.026

    Article  CAS  Google Scholar 

  8. Wang J, Lu J, Dong S, Zhu N, Gyimah E, Wang K, Li Y, Zhang Z (2019) An ultrasensitive electrochemical biosensor for detection of microRNA-21 based on redox reaction of ascorbic acid/iodine and duplex-specific nuclease assisted target recycling. Biosens Bioelectron 130:81–87. https://doi.org/10.1016/j.bios.2019.01.031

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Wang J (2021) A sensitive and label-free electrochemical microRNA biosensor based on Polyamidoamine Dendrimer functionalized Polypyrrole nanowires hybrid. Microchim Acta 188:173. https://doi.org/10.1007/s00604-021-04824-y

    Article  CAS  Google Scholar 

  10. Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183:3061–3067. https://doi.org/10.1007/s00604-016-1958-5

    Article  CAS  Google Scholar 

  11. Liang Y-R, Zhang Z-M, Liu Z-J, Wang K, Wu X-Y, Zeng K, Meng H, Zhang Z (2017) A highly sensitive signal-amplified gold nanoparticle-based electrochemical immunosensor for dibutyl phthalate detection. Biosens Bioelectron 91:199–202. https://doi.org/10.1016/j.bios.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Zhou L, Wang J, Chen Z, Li J, Wang T, Zhang Z, Xie G (2017) A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Microchim Acta 184:1305–1313. https://doi.org/10.1007/s00604-017-2129-z

    Article  CAS  Google Scholar 

  13. Tian L, Qi J, Ma X, Wang X, Yao C, Song W, Wang Y (2018) A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection. Biosens Bioelectron 122:43–50. https://doi.org/10.1016/j.bios.2018.09.037

    Article  CAS  PubMed  Google Scholar 

  14. Hou X, Guo W, Xia F, Nie F-Q, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805. https://doi.org/10.1021/ja901574c

    Article  CAS  PubMed  Google Scholar 

  15. Ying Y-L, Yu R-J, Hu Y-X, Gao R, Long Y-T (2017) Single antibody-antigen interactions monitored via transient ionic current recording using nanopore sensors. Chem Commun 53:8620–8623. https://doi.org/10.1039/c7cc03927a

    Article  CAS  Google Scholar 

  16. Gao R, Ying Y-L, Hu Y-X, Li Y-J, Long Y-T (2017) Wireless bipolar nanopore electrode for single small molecule detection. Anal Chem 89(14):7382–7387. https://doi.org/10.1021/acs.analchem.7b00729

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Tian Y, Hou J, Hou X, Hou G, Ou R, Wang H, Jiang L (2015) Bioinspired smart gate-location-controllable single nanochannels: experiment and theoretical simulation. ACS Nano 9(12):12264–12273. https://doi.org/10.1021/acsnano.5b05542

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X-P, Liu F-F, Hu W-C, Younis MR, Wang C, Xia X-H (2019) Biomimetic nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of microRNA in cells. Anal Chem 91(5):3582–3589. https://doi.org/10.1021/acs.analchem.8b05536

    Article  CAS  PubMed  Google Scholar 

  19. Shi L, Mu C, Gao T, Chen T, Hei S, Yang J, Li G (2018) DNA nanoflower blooms in nanochannels: a new strategy for miRNA detection. Chem Commun 54:11391–11394. https://doi.org/10.1039/c8cc05690k

    Article  CAS  Google Scholar 

  20. Liu X, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S (2016) Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina nanochannels. Anal Chem 88(16):8107–8114. https://doi.org/10.1021/acs.analchem.6b01817

    Article  CAS  PubMed  Google Scholar 

  21. Xia X, Li H, Zhou G, Ge L, Li F (2020) In situ growth of nano-gold on anodized aluminum oxide with tandem nanozyme activities towards sensitive electrochemical nanochannel sensing. Analyst 145:6617–6624. https://doi.org/10.1039/d0an01271h

    Article  CAS  PubMed  Google Scholar 

  22. Zhao X-P, Cao J, Nie X-G, Wang S-S, Wang C, Xia X-H (2017) Label-free monitoring of the thrombin–aptamer recognition reaction using an array of nanochannels coupled with electrochemical detection. Electrochem Commun 81:5–9. https://doi.org/10.1016/j.elecom.2017.05.018

    Article  CAS  Google Scholar 

  23. Han C, Hou X, Zhang H, Guo W, Li H, Jiang L (2011) Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc 133(20):7644–7643. https://doi.org/10.1021/ja2004939

    Article  CAS  PubMed  Google Scholar 

  24. Li S-J, Li J, Wang K, Wang C, Xu J-J, Chen H-Y, Xia X-H, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424. https://doi.org/10.1021/nn101050r

    Article  CAS  PubMed  Google Scholar 

  25. Chen JH, Zhang J, Guo Y, Li J, Fu FF, Yang H-H, Chen G (2011) An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme. Chem Commun 47:8004–8006. https://doi.org/10.1039/c1cc11929j

    Article  CAS  Google Scholar 

  26. Zhang J, Gao QL, Chen PP, Chen JH, Chen GN, Fu FF (2011) A novel Tb3+-promoted G-quadruplex-hemin DNAzyme for the development of label-free visual biosensors. Biosens Bioelectron 26:4053–4057. https://doi.org/10.1016/j.bios.2011.03.029

    Article  CAS  PubMed  Google Scholar 

  27. Willner I, Shlyahovsky B, Zayats M, Willne B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165. https://doi.org/10.1039/b718428j

    Article  CAS  PubMed  Google Scholar 

  28. Zhao F, Zhang H, Zheng J (2021) Novel electrochemical biosensing platform for microRNA detection based on G-quadruplex formation in nanochannels. Sens Actuators B Chem 327:128898. https://doi.org/10.1016/j.snb.2020.128898

    Article  CAS  Google Scholar 

  29. Hou L, Gao Z, Xu M, Cao X, Wu X, Chen G, Tang D (2014) DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosens Bioelectron 54:365–371. https://doi.org/10.1016/j.bios.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  30. Fan G-C, Lu Y, Ma L, Song Z-L, Luo X, Zhao W-W (2019) Target-induced formation of multiple DNAzymes in solid-state nanochannels: Toward innovative photoelectrochemical probing of telomerase activity. Biosens Bioelectron 142:111564. https://doi.org/10.1016/j.bios.2019.111564

    Article  CAS  PubMed  Google Scholar 

  31. Mohammed YE, Sherif A-S, Mahmoud MS, Takashi M, Ahmed E, Mohamed AS (2017) Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Anal Chim Acta 1142:143–156. https://doi.org/10.1016/j.aca.2020.11.004

    Article  CAS  Google Scholar 

  32. Zhou W, Tian Y-F, Yin B-C, Ye B-C (2017) Simultaneous surface-enhanced raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem 89(11):6120–6128. https://doi.org/10.1021/acs.analchem.7b00902

    Article  CAS  PubMed  Google Scholar 

  33. Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J (2018) A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal Chem 90(15):8969–8976. https://doi.org/10.1021/acs.analchem.8b01143

    Article  CAS  PubMed  Google Scholar 

  34. Peng L, Yuan Y, Fu X, Fu A, Zhang P, Chai Y, Gan X, Yuan R (2019) Reversible and distance-controllable DNA scissor: a regenerated electrochemiluminescence biosensing platform for ultrasensitive detection of microRNA. Anal Chem 91(5):3239–3245. https://doi.org/10.1021/acs.analchem.8b02757

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Li Z, Cheng Y, Lv X (2009) Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative. Chem Commun. https://doi.org/10.1039/b904579a

    Article  Google Scholar 

  36. Miao P, Zhang T, Xu J, Tang Y (2018) Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles. Anal Chem 90(18):11154–11160. https://doi.org/10.1021/acs.analchem.8b03425

    Article  CAS  PubMed  Google Scholar 

  37. Tian L, Qi J, Ma X, Wang X, Yao C, Song W, Wang Y (2018) A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/ molybdenum carbide nanocomposite for microRNA-21 detection. Biosens Bioelectron 122:4350. https://doi.org/10.1016/j.bios.2018.09.037

    Article  CAS  Google Scholar 

  38. Guo W-J, Wu Z, Yang X-Y, Pang D-W, Zhang Z-L (2019) Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosens Bioelectron 131:267–273. https://doi.org/10.1016/j.bios.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  39. Mohammed YE, Mohamed AS, Sherif AE-S, Abdullah R, Mahmoud MS (2021) Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Microchim Acta 188:138. https://doi.org/10.1007/s00604-021-04782-5

    Article  CAS  Google Scholar 

  40. Jiang Z, Jiao J, Li J, Zhang H, Zheng J (2021) Novel electrochemical biosensing platform for microRNA: Bivalent recognition-induced nanoparticle amplification occurred in nanochannels. Sens Actuators, B Chem 344:0925–4005. https://doi.org/10.1016/j.snb.2021.130209

    Article  CAS  Google Scholar 

  41. Fu P, Xing S, Xu M, Zhao Y, Zhao C (2020) Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sens Actuators B Chem 305:127545. https://doi.org/10.1016/j.snb.2019.127545

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21775120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Xue, W. & Zhang, H. Electrochemical microRNA detection based on catalytic deposition of G-quadruplex DNAzyme in nanochannels. J Appl Electrochem 52, 885–893 (2022). https://doi.org/10.1007/s10800-022-01673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01673-2

Keywords

Navigation