Skip to main content
Log in

Multi-walled carbon nanotubes/polyaniline covalently attached 18-crown-6-ether as a polymeric material for the potentiometric determination of delafloxacin

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In recent years, the global emergence of antibacterial resistance has led to the development of new antibacterial drugs with unique chemical structures. The FDA has recently approved delafloxacin for acute bacterial infection treatment. The proposed potentiometric sensor is considered as the first electrochemical method for accurate, precise, and sensitive determination of delafloxacin. It was based on developing a novel polymeric material that functioned as a recognition element and a transducer at the same time. This polymeric material was fabricated by the covalent polymerization of aniline monomers with the crown ether ionophore and followed by the ionic attachment to the surface of the MWCNTs. A linear response ranging from 1 × 10–3 to 1 × 10–8 mol L−1 and a high sensitivity reached nano-molar level down to 3.5 × 10–9 mol L−1 have been displayed by the fabricated sensor. It was used efficiently in human plasma, pure form, and pharmaceutical tablets for the quantitation of delafloxacin with high recovery ranged from 97.68% to 100.45% and without any extraction or pretreatment steps. The proposed sensor is characterized by high selectivity and stability over 143 days with no surface renewal.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  1. Mogle BT et al (2018) Clinical review of delafloxacin: a novel anionic fluoroquinolone. J Antimicrob Chemother 73(6):1439–1451

    Article  CAS  Google Scholar 

  2. Scott LJ (2020) Delafloxacin: a review in acute bacterial skin and skin structure infections. Drugs 80(12):1247–1258

    Article  CAS  Google Scholar 

  3. Dhangar KR, Shirkhedkar AA (2016) Estimation of delafloxacin using derivative spectrophotometry and area under curve in bulk material and in laboratory mixture. J Pharm Technol, Res and Manag 4(1):81–87

    Article  Google Scholar 

  4. Alam P et al (2020) Determination of delafloxacin in pharmaceutical formulations using a green RP-HPTLC and NP-HPTLC methods: a comparative study. Antibiotics (Basel) 9(6):359–372

    Article  CAS  Google Scholar 

  5. Iqbal, M., et al., Development and validation of a novel UPLC-MS/MS method for quantification of delafloxacin in plasma and aqueous humour for pharmacokinetic analyses. J Chromatogr B Analyt Technol Biomed Life Sci, 2020. 1138: p. 121961.

  6. Huang M-R et al (2012) Advanced solid-contact ion selective electrode based on electrically conducting polymers. Chin J Anal Chem 40(9):1454–1460

    Article  CAS  Google Scholar 

  7. Liang R, Yin T, Qin W (2015) A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Anal Chim Acta 853:291–296

    Article  CAS  Google Scholar 

  8. Faridbod F et al (2008) Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors 8:1645–1703

    Article  CAS  Google Scholar 

  9. Ganjali MR et al (2006) Supramol Based Membrane Sensors Sensors 6:1018–1086

    CAS  Google Scholar 

  10. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers (Basel) 9(4):150–181

    Article  Google Scholar 

  11. Elnaggar EM et al (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J Nanostructure Chem 7(1):75–83

    Article  CAS  Google Scholar 

  12. El-Rahman MKA et al (2015) Design of a stable solid-contact ion-selective electrode based on polyaniline nanoparticles as ion-to-electron transducer for application in process analytical technology as a real-time analyzer. Sens Actuators, B Chem 208:14–21

    Article  CAS  Google Scholar 

  13. Kamel AH et al (2019) Novel solid-state potentiometric sensors using polyaniline (PANI) as a solid-contact transducer for flucarbazone herbicide assessment. Polymers (Basel) 11:1796–1806

    Article  CAS  Google Scholar 

  14. Malhotra B et al (2015) Polyaniline-based biosensors Nanobiosensors in Disease Diagnosis 4:25–46

    Article  Google Scholar 

  15. Zengin H et al (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  16. Gan T et al (2016) Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification. J Appl Electrochem 46(3):389–401

    Article  CAS  Google Scholar 

  17. Saleh Ahammad AJ, Lee JJ, Rahman MA (2009) Electrochemical sensors based on carbon nanotubes. Sensors (Basel) 9(4):2289–2319

    Article  CAS  Google Scholar 

  18. Dhand C et al (2008) Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon 46(13):1727–1735

    Article  CAS  Google Scholar 

  19. Dhand C et al (2008) Polyaniline-carbon nanotube composite film for cholesterol biosensor. Anal Biochem 383(2):194–199

    Article  CAS  Google Scholar 

  20. Cui L et al (2013) Doped polyaniline/multiwalled carbon nanotube composites: Preparation and characterization. Polym Compos 34(7):1119–1125

    Article  CAS  Google Scholar 

  21. Huang Y (2019) Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci. https://doi.org/10.20964/2019.09.86

    Article  Google Scholar 

  22. Nikzad L, Vaezi MR, Yazdani B (2012) Synthesis of carbon nanotube–Poly aniline nano composite and evaluation of electrochemical properties. Int J Modern Phys: Conference Series 05:527–535

    CAS  Google Scholar 

  23. Oueiny C, Berlioz S, Perrin F-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39(4):707–748

    Article  CAS  Google Scholar 

  24. Wu T-M, Lin Y-W (2006) Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47(10):3576–3582

    Article  CAS  Google Scholar 

  25. Pandharipande S, Bankar SS (2017) Development of polyaniline grafted chitosan sensor for detection of ammonia & ethanol vapour. Int Res J Eng and Technol 4(8):534–540

    Google Scholar 

  26. Hussain T et al (2018) Polyaniline/silver decorated-MWCNT composites with enhanced electrical and thermal properties. Polym Compos 39(S3):E1346–E1353

    Article  CAS  Google Scholar 

  27. Evtugyn GA et al (2010) Discrimination of apple juice and herbal liqueur brands with solid-state electrodes covered with polyaniline and thiacalixarenes. Talanta 82(2):613–619

    Article  CAS  Google Scholar 

  28. Evtugyn GA et al (2007) Ag selective electrode based on glassy carbon electrode covered with polyaniline and thiacalix[4]arene as neutral carrier. Talanta 71(4):1720–1727

    Article  CAS  Google Scholar 

  29. Mahmoud AM et al (2015) Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J Electroanal Chem 755:122–126

    Article  CAS  Google Scholar 

  30. Soleymanpour A, Rezvani SA (2017) Liquid membrane/polyaniline film coated glassy carbon sensor for highly sensitive and selective determination of fluvoxamine in pharmaceutical and biological samples. Sens Actuators, B Chem 247:602–608

    Article  CAS  Google Scholar 

  31. G, M., R.J. Mascarenhas, and B.M. Basavaraja, (2019) Sensitively-selective determination of Propyl Paraben preservative based on synergistic effects of polyaniline-zinc-oxide nano-composite incorporated into graphite paste electrode. Colloids Surf B Biointerfaces 184:e110529

    Article  Google Scholar 

  32. Tawade AK et al (2019) Flower-like ZnO-decorated polyaniline-graphene oxide nanocomposite for electrochemical oxidation of imidacloprid: a hybrid nanocomposite sensor. J Electron Mater 48(12):7747–7755

    Article  CAS  Google Scholar 

  33. Wang A-J et al (2010) In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171(3–4):431–436

    Article  CAS  Google Scholar 

  34. Zahed FM et al (2018) Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J Pharm Biomed Anal 161:12–19

    Article  CAS  Google Scholar 

  35. Dhall, S., Cost effective synthesis of MWCNTs/PANI composites. Materials Research Express, 2016. 3(10): p. 105002.

  36. Thakur, V.K. and M.K. Thakur, Chemical Functionalization of Carbon Nanomaterials Chemistry and Applications. 2016: CRC Press Taylor & Francis Group.

  37. Umezawa Y et al (2000) Potentiometric selectivity coefficients of ion-selective electrodes. Part I inorganic cations (technical report). Pure and Appl Chem 72(10):1851–2082

    Article  CAS  Google Scholar 

  38. Abdallah NA (2020) Solid-contact ISE for the potentiometric determination of melitracen hydrochloride in pharmaceutical tablets and human plasma. J The Electrochem Soc 167(4):e047504

    Article  Google Scholar 

  39. Umezawa Y et al (2000) Potentiometric selectivity coefficients of ion-selective electrodes part I. Inorganic Cations Pure and Appl Chem 72(10):1851–2082

    Article  CAS  Google Scholar 

  40. Bakker E, Pretsch E, P. Buhlmann, (2000) Selectivity of potentiometric ion sensors. Anal Chem 72:1127–1133

    Article  CAS  Google Scholar 

  41. Umezawa Y, Umezawa K, Sato H (1995) Selectivity coefficients for ion-selective electrodes: recommended methods for reporting K pot values. Pure Appl Chem 67(3):507–518

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad A. Abdallah.

Ethics declarations

Conflicts of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, N.A., Alahmadi, Y.M., Bafail, R. et al. Multi-walled carbon nanotubes/polyaniline covalently attached 18-crown-6-ether as a polymeric material for the potentiometric determination of delafloxacin. J Appl Electrochem 52, 311–323 (2022). https://doi.org/10.1007/s10800-021-01636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01636-z

Keywords

Navigation