Skip to main content
Log in

Voltammetric determination of lactic acid in milk samples using carbon paste electrode modified with chitosan-based magnetic molecularly imprinted polymer

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A carbon paste electrode, modified with chitosan-based magnetic molecularly imprinted polymer (CS-MIP), was utilized as a highly sensitive electrochemical sensor for the determination of lactic acid (LA) in spoilage milk samples. The electrochemical measurements were indirectly performed by cyclic voltammetry and differential pulse voltammetry in the presence of K3[Fe(CN)6] as a redox probe. A decrease in the faradic current of the redox probe was imputed to the gate effect mechanism, which was related to electrical effects causing to disrupt the electronic transport pathway. The linear response ranges were 0.01–10.0 µM and 10.0–500.0 µM, and the detection limit was 0.005 µM. The electrochemical sensor was used for the determination of lactic acid in real milk samples with satisfactory results.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Pogodin PV, Archakov AI (2018) Molecular imprinting coupled with electrochemical analysis for plasma samples classification in acute myocardial infarction diagnostic. Biosens Bioelectron 99:216–222

    CAS  PubMed  Google Scholar 

  2. Yoshikawa M, Tharpa K, Dima S-O (2016) Molecularly imprinted membranes: past, present, and future. Chem Rev 116(19):11500–11528

    CAS  PubMed  Google Scholar 

  3. Zamora-Gálvez A, Ait-Lahcen A, Mercante LA, Morales-Narváez E, Amine A, Merkoçi A (2016) Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal Chem 88(7):3578–3584

    PubMed  Google Scholar 

  4. Gui R, Jin H, Guo H, Wang Z (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70

    CAS  PubMed  Google Scholar 

  5. Zhou T, Feng Y, Zhou L, Tao Y, Luo D, Jing T, Shen X, Zhou Y, Mei S (2016) Selective and sensitive detection of tetrabromobisphenol-A in water samples by molecularly imprinted electrochemical sensor. Sens Actuators B: Chem 236:153–162

    CAS  Google Scholar 

  6. Duan H, Li L, Wang X, Wang Y, Li J, Luo C (2015) A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochim Acta Part A Mol Biomol Spectrosc 139:374–379

    CAS  Google Scholar 

  7. Duan H, Li X, Li L, Wang X, Feng J, Sun M, Luo C (2014) A novel chemiluminescence sensor for determination of vanillin with magnetite–graphene oxide molecularly imprinted polymers. Anal Methods 6(21):8706–8712

    CAS  Google Scholar 

  8. Han Q, Wang X, Yang Z, Zhu W, Zhou X, Jiang H (2014) Fe3O4@ rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta 123:101–108

    CAS  PubMed  Google Scholar 

  9. Long F, Zhang Z, Yang Z, Zeng J, Jiang Y (2015) Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J Electroanal Chem 755:7–14

    CAS  Google Scholar 

  10. Holm A, Kunz L, Riscoe AR, Kao K-C, Cargnello M, Frank CW (2019) General self-assembly method for deposition of graphene oxide into uniform close-packed monolayer films. Langmuir 35(13):4460–4470

    CAS  PubMed  Google Scholar 

  11. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    CAS  PubMed  Google Scholar 

  12. Yao H, Jin L, Sue H-J, Sumi Y, Nishimura R (2013) Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach. J Mater Chem A 1(36):10783–10789

    CAS  Google Scholar 

  13. Gan T, Lv Z, Sun J, Shi Z, Liu Y (2016) Preparation of graphene oxide-wrapped carbon sphere@ silver spheres for high performance chlorinated phenols sensor. J Hazard Mater 302:188–197

    CAS  PubMed  Google Scholar 

  14. Gan T, Wang Z, Shi Z, Zheng D, Sun J, Liu Y (2018) Graphene oxide reinforced core–shell structured Ag@ Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications. Biosens Bioelectron 112:23–30

    CAS  PubMed  Google Scholar 

  15. Moro G, De Wael K, Moretto LM (2019) Challenges in the electrochemical (bio) sensing of nonelectroactive food and environmental contaminants. Curr Opin Electrochem 16:57–65

    CAS  Google Scholar 

  16. Karimian N, Vagin M, Zavar MHA, Chamsaz M, Turner AP, Tiwari A (2013) An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens Bioelectron 50:492–498

    CAS  PubMed  Google Scholar 

  17. Sharma PS, Garcia-Cruz A, Cieplak M, Noworyta KR, Kutner W (2019) ‘Gate effect’ in molecularly imprinted polymers: the current state of understanding. Curr Opin Electrochem 16:50–56

    CAS  Google Scholar 

  18. Lach P, Cieplak M, Majewska M, Noworyta KR, Sharma PS, Kutner W (2019) “Gate effect” in p-synephrine electrochemical sensing with a molecularly imprinted polymer and redox probes. Anal Chem 91(12):7546–7553

    CAS  PubMed  Google Scholar 

  19. Yoshimi Y, Sato K, Ohshima M, Piletska E (2013) Application of the ‘gate effect’ of a molecularly imprinted polymer grafted on an electrode for the real-time sensing of heparin in blood. Analyst 138(17):5121–5128

    CAS  PubMed  Google Scholar 

  20. Gan T, Lv Z, Sun Y, Shi Z, Sun J, Zhao A (2016) Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@ SnS 2-assisted signal amplification. J Appl Electrochem 46(3):389–401

    CAS  Google Scholar 

  21. Chen C, Bloomfield AJ, Sheehan SW (2017) Selective electrochemical oxidation of lactic acid using iridium-based catalysts. Ind Eng Chem Res 56(13):3560–3567

    CAS  Google Scholar 

  22. Tsai Y-C, Chen S-Y, Liaw H-W (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens Actuators B 125(2):474–481

    CAS  Google Scholar 

  23. Bouteille R, Gaudet M, Lecanu B, This H (2013) Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy. J Dairy Sci 96(4):2071–2080

    CAS  PubMed  Google Scholar 

  24. Shapiro F, Silanikove N (2010) Rapid and accurate determination of D-and L-lactate, lactose and galactose by enzymatic reactions coupled to formation of a fluorochromophore: applications in food quality control. Food Chem 119(2):829–833

    CAS  Google Scholar 

  25. Alizadeh T, Nayeri S, Mirzaee S (2019) A high performance potentiometric sensor for lactic acid determination based on molecularly imprinted polymer/MWCNTs/PVC nanocomposite film covered carbon rod electrode. Talanta 192:103–111

    CAS  PubMed  Google Scholar 

  26. Hashemzadeh S, Omidi Y, Rafii-Tabar H (2019) Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim Acta 186(10):680

    CAS  Google Scholar 

  27. Ewaschuk JB, Zello GA, Naylor JM, Brocks DR (2002) Metabolic acidosis: separation methods and biological relevance of organic acids and lactic acid enantiomers. J Chromatogr B 781(1–2):39–56

    CAS  Google Scholar 

  28. Paik MJ, Cho EY, Kim H, Kim KR, Choi S, Ahn YH, Lee G (2008) Simultaneous clinical monitoring of lactic acid, pyruvic acid and ketone bodies in plasma as methoxime/tert-butyldimethylsilyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode. Biomed Chromatogr 22(5):450–453

    CAS  PubMed  Google Scholar 

  29. Figenschou DL, Marais JP (1991) Spectrophotometric method for the determination of microquantities of lactic acid in biological material. Anal Biochem 195(2):308–312

    CAS  PubMed  Google Scholar 

  30. Zouaoui F, Bourouina-Bacha S, Bourouina M, Jaffrezic-Renault N, Zine N, Errachid A (2020) Electrochemical sensors based on molecularly imprinted chitosan: a review. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2020.115982

    Article  Google Scholar 

  31. Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D (2020) Magnetic molecularly imprinted electrochemical sensors: a review. Anal Chim Acta 1106:1–21

    CAS  PubMed  Google Scholar 

  32. Gan T, Li J, Zhao A, Xu J, Zheng D, Wang H, Liu Y (2018) Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem 268:1–8

    CAS  PubMed  Google Scholar 

  33. Wei P, Zhu Z, Song R, Li Z, Chen C (2019) An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim Acta 317:93–101

    CAS  Google Scholar 

  34. Zhang Z, Kong J (2011) Novel magnetic Fe3O4@ C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329

    CAS  PubMed  Google Scholar 

  35. Zaaba N, Foo K, Hashim U, Tan S, Liu W-W, Voon C (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Proc Eng 184:469–477

    CAS  Google Scholar 

  36. Kong D, Wang N, Qiao N, Wang Q, Wang Z, Zhou Z, Ren Z (2017) Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper (II). ACS Sustain Chem Eng 5(8):7401–7409

    CAS  Google Scholar 

  37. Wang Y, Yao L, Liu X, Cheng J, Liu W, Liu T, Sun M, Zhao L, Ding F, Lu Z (2019) CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: preparation, characterization and detection of metronidazole. Biosens Bioelectron 142:111483

    CAS  PubMed  Google Scholar 

  38. Anirudhan TS, Alexander S (2015) Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide. Biosens Bioelectron 64:586–593

    CAS  PubMed  Google Scholar 

  39. Deng P, Xu Z, Li J, Kuang Y (2013) Acetylene black paste electrode modified with a molecularly imprinted chitosan film for the detection of bisphenol A. Microchim Acta 180(9–10):861–869

    CAS  Google Scholar 

  40. Takahashi S, Kurosawa S, Anzai J (2008) Electrochemical determination of L-lactate using phenylboronic acid monolayer‐modified electrodes. Electroanalysis 20(7):816–818

    CAS  Google Scholar 

  41. Xu L, Li J, Zhang J, Sun J, Gan T, Liu Y (2020) A disposable molecularly imprinted electrochemical sensor for the ultra-trace detection of the organophosphorus insecticide phosalone employing monodisperse Pt-doped UiO-66 for signal amplification. Analyst 145(9):3245–3256

    CAS  PubMed  Google Scholar 

  42. Wang Z, Li H, Chen J, Xue Z, Wu B, Lu X (2011) Acetylsalicylic acid electrochemical sensor based on PATP–AuNPs modified molecularly imprinted polymer film. Talanta 85(3):1672–1679

    CAS  PubMed  Google Scholar 

  43. Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174

    PubMed  Google Scholar 

  44. Hashemzadeh S, Omidi Y, Rafii-Tabar H (2019) Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim Acta 186(10):1–8

    Google Scholar 

  45. Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129

    CAS  PubMed  Google Scholar 

  46. Lei Y, Luo N, Yan X, Zhao Y, Zhang G, Zhang Y (2012) A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale 4(11):3438–3443

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Shiraz University Research Council for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Tashkhourian or Bahram Hemmateenejad.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, Z., Tashkhourian, J. & Hemmateenejad, B. Voltammetric determination of lactic acid in milk samples using carbon paste electrode modified with chitosan-based magnetic molecularly imprinted polymer. J Appl Electrochem 52, 35–44 (2022). https://doi.org/10.1007/s10800-021-01619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01619-0

Keywords

Navigation