Skip to main content
Log in

Imprinted polypyrrole recognition film @cobalt oxide/electrochemically reduced graphene oxide nanocomposite for carbendazim sensing

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive carbendazim (CBZ) voltammetric sensor based on cobalt oxide/electrochemically reduced graphene oxide (CoOx/ERGO) is designed using an imprinted polypyrrole (PPy) film. The CoOx layer was electrodeposited onto the ERGO modified glassy carbon electrode (ERGO/GCE), followed by the electrosynthesis of PPy in the presence of CBZ as a template. This sensor integrates the specificity of the imprinted PPy receptor to CBZ and the synergistic properties of electrocatalytic activity and active surface area of CoOx and ERGO. The sensor’s formation was investigated by scanning electron microscope (SEM) and electrochemical approaches in the presence of [Fe(CN)6]3−/4− probe. The CoOx/ERGO modified GCE exhibited an enchantment peak current for about 6 times to GCE. The experimental parameters related to the formation of nanohybrid, and the imprinted polymer were optimized. The oxidation peak current of CBZ ip is linearly correlated to the CBZ concentrations in a range of 0.01 nM to 10 μM CBZ with a limit of detection of ca, 0.01 nM. The sensor was successfully tested in CBZ detection in apple and tomato.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brycht M, Vajdle O, Sipa K et al (2018) β-Cyclodextrin and multiwalled carbon nanotubes modified boron-doped diamond electrode for voltammetric assay of carbendazim and its corrosion inhibition behavior on stainless steel. Ionics 24:923–934. https://doi.org/10.1007/s11581-017-2253-0

    Article  CAS  Google Scholar 

  2. Yao Y, Wen Y, Zhang L et al (2014) Electrochemical recognition and trace-level detection of bactericide carbendazim using carboxylic group functionalized poly(3,4-ethylenedioxythiophene) mimic electrode. Anal Chim Acta 831:38–49. https://doi.org/10.1016/j.aca.2014.04.059

    Article  CAS  PubMed  Google Scholar 

  3. Fang H, Wang Y, Gao C et al (2010) Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation 21:939–946. https://doi.org/10.1007/s10532-010-9353-0

    Article  CAS  PubMed  Google Scholar 

  4. Yu G, Guo Q, Xie L et al (2009) Effects of subchronic exposure to carbendazim on spermatogenesis and fertility in male rats. Toxicol Ind Health 25:41–47. https://doi.org/10.1177/0748233709103033

    Article  CAS  PubMed  Google Scholar 

  5. Farag A, Ebrahim H, ElMazoudy R et al (2011) Developmental toxicity of fungicide carbendazim in female mice. Birth Defects Res B Dev Reprod Toxicol 92:122–130. https://doi.org/10.1002/bdrb.20290

    Article  CAS  PubMed  Google Scholar 

  6. Aire TA (2005) Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica). Anat Embryol (Berl) 210:43–49. https://doi.org/10.1007/s00429-005-0001-0

    Article  CAS  Google Scholar 

  7. Hernández AF, Parrón T, Tsatsakis AM et al (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145. https://doi.org/10.1016/j.tox.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Chen J, Li B et al (2018) Carbendazim residues in vegetables in China between 2014 and 2016 and a chronic carbendazim exposure risk assessment. Food Control 91:20–25. https://doi.org/10.1016/j.foodcont.2018.03.016

    Article  CAS  Google Scholar 

  9. Selmanoglu G, Barlas N, Songür S et al (2001) Carbendazim-induced haematological, biochemical and histopathological changes to the liver and kidney of male rats. Hum Exp Toxicol 20:625–630. https://doi.org/10.1191/096032701718890603

    Article  CAS  PubMed  Google Scholar 

  10. Aguiar Júnior CAS, Santos ALRD, Faria AMd (2020) Disposable pipette extraction using a selective sorbent for carbendazim residues in orange juice. Food Chem 309:125756. https://doi.org/10.1016/j.foodchem.2019.125756

    Article  CAS  PubMed  Google Scholar 

  11. Huan Z, Luo J, Xu Z et al (2016) Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bull Environ Contam Toxicol 96:62–69. https://doi.org/10.1007/s00128-015-1653-y

    Article  CAS  PubMed  Google Scholar 

  12. Mohapatra S, S L, (2016) Residue level and dissipation of carbendazim in/on pomegranate fruits and soil. Environ Monit Assess 188:406. https://doi.org/10.1007/s10661-016-5404-2

    Article  CAS  PubMed  Google Scholar 

  13. Chayata H, Lassalle Y, Nicol É et al (2016) Characterization of the ultraviolet-visible photoproducts of thiophanate-methyl using high performance liquid chromatography coupled with high resolution tandem mass spectrometry-detection in grapes and tomatoes. J Chromatogr A 1441:75–82. https://doi.org/10.1016/j.chroma.2016.02.078

    Article  CAS  PubMed  Google Scholar 

  14. Dong Y, Yang L, Zhang L (2017) Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J Agric Food Chem 65:727–736. https://doi.org/10.1021/acs.jafc.6b04675

    Article  CAS  PubMed  Google Scholar 

  15. Yang B-c, Wan X-d, Yang X et al (2018) Rapid determination of carbendazim in complex matrices by electrospray ionization mass spectrometry with syringe filter needle. J Mass Spectrom 53:234–239. https://doi.org/10.1002/jms.4057

    Article  CAS  PubMed  Google Scholar 

  16. Mathur RP, Sharma S, Bhushan R (1988) HPLC Determination of carbendazim in formulations. J Liq Chromatogr 11:2621–2628. https://doi.org/10.1080/01483918808076750

    Article  CAS  Google Scholar 

  17. Saito-Shida S, Hamasaka T, Nemoto S et al (2018) Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry: comparison between Orbitrap and time-of-flight mass analyzers. Food Chem 256:140–148. https://doi.org/10.1016/j.foodchem.2018.02.123

    Article  CAS  PubMed  Google Scholar 

  18. Pano-Farias NS, Ceballos-Magaña SG, Muñiz-Valencia R et al (2017) Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS. Food Chem 237:30–38. https://doi.org/10.1016/j.foodchem.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Lin M, Sun L et al (2019) Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem 293:271–277. https://doi.org/10.1016/j.foodchem.2019.04.085

    Article  CAS  PubMed  Google Scholar 

  20. Strickland AD, Batt CA (2009) Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Anal Chem 81:2895–2903. https://doi.org/10.1021/ac801626x

    Article  CAS  PubMed  Google Scholar 

  21. Chang J, Li H, Hou T et al (2016) Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosens Bioelectron 86:971–977. https://doi.org/10.1016/j.bios.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  22. Zhao S, Lei J, Huo D et al (2018) A laser-induced fluorescent detector for pesticide residue detection based on the spectral recognition method. Anal Methods 10:5507–5515. https://doi.org/10.1039/C8AY02067A

    Article  CAS  Google Scholar 

  23. Pourreza N, Rastegarzadeh S, Larki A (2015) Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV–vis spectrophotometry. Talanta 134:24–29. https://doi.org/10.1016/j.talanta.2014.10.056

    Article  CAS  PubMed  Google Scholar 

  24. Gan T, Li J, Li H et al (2019) Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. Nanoscale 11:7839–7849. https://doi.org/10.1039/C9NR01101C

    Article  CAS  PubMed  Google Scholar 

  25. Xie Y, Gao F, Tu X et al (2019) Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem 855:113468. https://doi.org/10.1016/j.jelechem.2019.113468

    Article  CAS  Google Scholar 

  26. Feng S, Li Y, Zhang R et al (2019) A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination. Biosens Bioelectron 142:111491. https://doi.org/10.1016/j.bios.2019.111491

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Wu X, Zhang Q et al (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Microchim Acta 183:1433–1439. https://doi.org/10.1007/s00604-016-1765-z

    Article  CAS  Google Scholar 

  28. Dong X-C, Xu H, Wang X-W et al (2012) 3D Graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. https://doi.org/10.1021/nn300097q

    Article  CAS  PubMed  Google Scholar 

  29. Jiang L, Gu S, Ding Y et al (2013) Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine. Colloids Surf B 107:146–151. https://doi.org/10.1016/j.colsurfb.2013.01.077

    Article  CAS  Google Scholar 

  30. Shahid MM, Rameshkumar P, Pandikumar A et al (2015) An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide nanocube@platinum nanocomposite for nitric oxide detection. J Mater Chem A 3:14458–14468. https://doi.org/10.1039/C5TA02608C

    Article  CAS  Google Scholar 

  31. Zhang T, He C, Sun F et al (2017) Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Sci Rep 7:43638–43638. https://doi.org/10.1038/srep43638

    Article  PubMed  PubMed Central  Google Scholar 

  32. Casella IG, Guascito MR (1999) Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. J Electroanal Chem 476:54–63. https://doi.org/10.1016/S0022-0728(99)00366-6

    Article  CAS  Google Scholar 

  33. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38. https://doi.org/10.1016/S0022-0728(02)01100-2

    Article  CAS  Google Scholar 

  34. Qiu B, Guo W, Liang Z et al (2017) Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance. RSC Adv 7:13340–13346. https://doi.org/10.1039/C6RA28296B

    Article  CAS  Google Scholar 

  35. Leng X, Wei S, Jiang Z et al (2015) Carbon-encapsulated Co3O4 nanoparticles as anode materials with super lithium storage performance. Sci Rep 5:16629. https://doi.org/10.1038/srep16629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jing M, Zhou M, Li G et al (2017) Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl Mater Interfaces 9:9662–9668. https://doi.org/10.1021/acsami.6b16396

    Article  CAS  PubMed  Google Scholar 

  37. Kim DM, Moon JM, Lee WC et al (2017) A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron 91:276–283. https://doi.org/10.1016/j.bios.2016.12.046

    Article  CAS  PubMed  Google Scholar 

  38. Ansari S (2017) Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers. TrAC Trends Anal Chem 89:146–162. https://doi.org/10.1016/j.trac.2017.02.002

    Article  CAS  Google Scholar 

  39. Capoferri D, Del Carlo M, Ntshongontshi N et al (2017) MIP-MEPS based sensing strategy for the selective assay of dimethoate. Application to wheat flour samples. Talanta 174:599–604. https://doi.org/10.1016/j.talanta.2017.06.062

    Article  CAS  PubMed  Google Scholar 

  40. Zhao F, She Y, Zhang C et al (2017) Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 1064:143–150. https://doi.org/10.1016/j.jchromb.2017.08.022

    Article  CAS  Google Scholar 

  41. Arvinte A, Doroftei F, Pinteala M (2016) Comparative electrodeposition of Ni–Co nanoparticles on carbon materials and their efficiency in electrochemical oxidation of glucose. J Appl Electrochem 46:425–439. https://doi.org/10.1007/s10800-015-0912-2

    Article  CAS  Google Scholar 

  42. Luo S, Wu Y, Gou H (2013) A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics 19:673–680. https://doi.org/10.1007/s11581-013-0868-3

    Article  CAS  Google Scholar 

  43. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393. https://doi.org/10.1016/S0022-0728(74)80448-1

    Article  CAS  Google Scholar 

  44. Bard AJFL (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  45. Sant’Anna MVS, Carvalho SWMM, Gevaerd A et al (2020) Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta 220:121334. https://doi.org/10.1016/j.talanta.2020.121334

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd-Elgawad Radi.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshafey, R., Abo-Sobehy, G.F. & Radi, AE. Imprinted polypyrrole recognition film @cobalt oxide/electrochemically reduced graphene oxide nanocomposite for carbendazim sensing. J Appl Electrochem 52, 45–53 (2022). https://doi.org/10.1007/s10800-021-01613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01613-6

Keywords

Navigation