Skip to main content
Log in

Effect of Zn coating on microstructure and corrosion behavior of dissimilar joints between aluminum alloy and steel by refilled friction stir spot welding

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Refilled friction stir spot welding of aluminum alloy to galvanized and uncoated steel was conducted, and the microstructure and the corrosion behavior of joints were investigated. Al5FeSi phases distributed in TMAZ and broke during tool stirring in NZ, which induced the pitting corrosion in 3.5 wt% NaCl solution. The maximum corrosion depth of ST-Al/ST06 Z joint was up to 21.3 μm at the mixed layer, which was 2.8 μm deeper than that of ST-Al/ST16 joint at the interface between aluminum alloy and steel. Zn and Mg segregated at the grain boundaries of the mixed layer, resulting in serious intergranular corrosion. The corrosion current density of ST-Al/ST06 Z joint ((8.1 ± 0.2) × 10–6 A/cm−2) is higher than that of ST-Al/ST16 joint ((7.9 ± 0.4) × 10–6 A/cm−2) after immersion for 1 h in 3.5 wt% NaCl solution. The corrosion current densities of samples were minimum for 6 h immersion time, which was related to the passivation films and corrosion products formed on the joint surface.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fridlyander IN, Sister VG, Grushko OE, Berstenev VV, Sheveleva LM, Ivanova LA (2002) Aluminium alloys: promising aterials in the automotive industry. J Met Sci Heat Treat 44:365–370. https://doi.org/10.1023/A:1021901715578

    Article  CAS  Google Scholar 

  2. General Motors Corporation 2020

  3. Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM (2014) Friction stir welding: process, automation, and control. J Manuf Process 16:56–73. https://doi.org/10.1016/j.jmapro.2013.04.002

    Article  Google Scholar 

  4. Zhang YF, Huang JH, Cheng Z, Ye Z, Chi H, Peng L, Chen SH (2016) Study on MIG-TIG double-sided arc welding-brazing of aluminium and stainless steel. Mater Lett 172:146–148. https://doi.org/10.1016/j.matlet.2016.02.146

    Article  CAS  Google Scholar 

  5. Lin SB, Song JL, Yang CL, Fan CL, Zhang DW (2010) Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminium alloy and stainless steel with Al-Cu filler metal. Mater Des 31:2637–2642. https://doi.org/10.1016/j.matdes.2009.12.005

    Article  CAS  Google Scholar 

  6. Lyu X, Li M, Li X et al (2018) Double-sided friction stir spot welding of steel and aluminum alloy sheets. Int J Adv Manuf Tech 96(5–8):2875–2884. https://doi.org/10.1007/s00170-018-1710-x

    Article  Google Scholar 

  7. Tiwan IMN, Kusmono, (2021) Microstructure and mechanical properties of friction stir spot welded AA5052-H112 aluminum alloy. Heliyon 7(2):e06009. https://doi.org/10.1016/j.heliyon.2021.e06009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubourg L, Merati A, Jahazi M (2010) Process optimisation and mechanical properties of friction stir lap welds of 7075–T6 stringers on 2024–T3 skin. Mater Design 31:3324–3330. https://doi.org/10.1016/j.matdes.2010.02.002

    Article  CAS  Google Scholar 

  9. Bousquet E, Poulon-Quintin A, Puiggali M, Devos O, Touzet M (2011) Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024–T3 friction stir welded joint. Corros Sci 53:3026–3034. https://doi.org/10.1016/j.corsci.2011.05.049

    Article  CAS  Google Scholar 

  10. Bagheri B, Abbasi M, Abdollahzadeh A et al (2019) Advanced approach to modify friction stir spot welding process. Met Mater Int 26(10):1562–1573. https://doi.org/10.1007/s12540-019-00416-x

    Article  CAS  Google Scholar 

  11. Wadeson DA, Zhou X, Thompson GE, Skeldon P, Djapic Oosterkamp L, Scamans G (2006) Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy. Corros Sci 48:887–897. https://doi.org/10.1016/j.corsci.2005.02.020

    Article  CAS  Google Scholar 

  12. Sinhmar S, Dwivedi DK (2018) A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminium alloy. Corros Sci 133:25–35. https://doi.org/10.1016/j.corsci.2018.01.012

    Article  CAS  Google Scholar 

  13. Bertoncello João CB, Manhabosco Sara M, Dick Luís FP (2015) Corrosion study of the friction stir lap joint of AA7050-T76511 on AA2024-T3 using the scanning vibrating electrode technique. Corros Sci 94:359–367. https://doi.org/10.1016/j.corsci.2015.02.029

    Article  CAS  Google Scholar 

  14. Mulaba-Kapinga D, Nyembwe KD, Ikumapayi OM et al (2020) Mechanical, electrochemical and structural characteristics of friction stir spot welds of aluminum alloy 6063. Manuf Rev 7:25. https://doi.org/10.1051/mfreview/2020022

    Article  CAS  Google Scholar 

  15. Wang W, Li TQ, Wang KS, Cai J, Qiao K (2016) Effect of travel speed on the stress corrosion behavior of friction stir welded 2024–T4 aluminium alloy. J Mater Eng Perform 25:1820–1828. https://doi.org/10.1007/s11665-016-1979-6

    Article  CAS  Google Scholar 

  16. Jariyaboon M, Davenport AJ, Ambat R, Connolly BJ, Williams SW, Price DA (2007) Corros Sci 49:877–909. https://doi.org/10.1016/j.corsci.2006.05.038

    Article  CAS  Google Scholar 

  17. Zhang ZK, Yu Y, Zhang JF, Wang XJ (2017) Corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminium alloy and DP600 galvanized steel in 3.5% NaCl solution. Metals 7:338. https://doi.org/10.3390/met7090338

    Article  CAS  Google Scholar 

  18. Li P, Wang YQ, Wang S, Yang J, Dong HG, Yan DJ (2018) Corrosion behavior of refilled friction stir spot welded joint between aluminium alloy and galvanized steel. Mater Res Express 5:096524. https://doi.org/10.1088/2053-1591/aad890

    Article  CAS  Google Scholar 

  19. Murugan B, Kundu S (2019) Study on microstructure, mechanical, and electrochemical behaviour of friction stir welded joints between aluminium and 304 stainless steel. Mater Res Express 6:016515. https://doi.org/10.1088/2053-1591/aae3c1

    Article  CAS  Google Scholar 

  20. Wloka J, Laukant H, Glatzel U, Virtanen S (2007) Corrosion properties of laser beam joints of aluminium with zinc-coated steel. Corros Sci 49:4243–4258. https://doi.org/10.1016/j.corsci.2007.04.014

    Article  CAS  Google Scholar 

  21. Dong H, Chen S, Song Y et al (2016) Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets. Mater Des 94:457–466. https://doi.org/10.1016/j.matdes.2016.01.066

    Article  CAS  Google Scholar 

  22. Li P, Chen S, Dong H et al (2020) Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding. J Manuf Process 49:385–396. https://doi.org/10.1016/j.jmapro.2019.09.047

    Article  CAS  Google Scholar 

  23. Ding QY, Qin YX, Cui YY (2020) Galvanic corrosion of aircraft components in atmospheric environment. J Chin Soc Corrosi Protect 40(5):455–462

    Google Scholar 

  24. Zheng QJ, Wu J, Jiang HX et al (2021) Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys. Corros Sci 179:109113. https://doi.org/10.1016/j.corsci.2020.109113

    Article  CAS  Google Scholar 

  25. Fernanda MQ, Donatus U, Ramirez OMP et al (2019) Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloy. Electrochim Acta 313:271–281. https://doi.org/10.1016/j.electacta.2019.04.137

    Article  CAS  Google Scholar 

  26. Taylor JA (2012) Iron-containing intermetallic phases in Al-Si based casting alloys. Proc Mater Sci 1:19–33. https://doi.org/10.1016/j.mspro.2012.06.004

    Article  CAS  Google Scholar 

  27. Ibrahim I, Uematsu Y, Kakiuchi T et al (2015) Fatigue behaviour of dissimilar Al alloy/galvanised steel friction stir spot welds fabricated by scroll grooved tool without probe. Sci Technol Weld Joi 20(8):670–678. https://doi.org/10.1179/1362171815y.0000000053

    Article  CAS  Google Scholar 

  28. Torbati-Sarraf H, Torbati-Sarraf SA, Chawla N et al (2020) A comparative study of corrosion behavior of an additively manufactured Al-6061 RAM2 with extruded Al-6061 T6. Corros Sci 174:108838. https://doi.org/10.1016/j.corsci.2020.108838

    Article  CAS  Google Scholar 

  29. Liu YJ, Wang ZY, Ke W, Chin J (2013) Corrosion behavior of 2024–T3 aluminium alloy in simulated marine atmospheric environment. J Nonferrous Met 23:1208–1216

    CAS  Google Scholar 

  30. Wang YF, Cheng GX, Li Y (2016) Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ and 3-D measuring microscope. Corros Sci 111:508–517

    Article  CAS  Google Scholar 

  31. Murugan B, Thirunavukarasu G, Kundu S et al (2019) Influence of tool traverse speed on structure, mechanical properties, fracture behavior, and weld corrosion of friction stir welded joints of aluminum and stainless steel. Adv Eng Mater. https://doi.org/10.1002/adem.201800869

    Article  Google Scholar 

  32. Gollapudi S (2012) Grain size distribution effects on the corrosion behavior of materials. Corros Sci 62:90–94. https://doi.org/10.1016/j.corsci.04.040

    Article  CAS  Google Scholar 

  33. Ralston KD, Fabijanic D, Birbilis N (2011) Effect of grain size on corrosion of high purity aluminium. Electrochim Acta 56(4):1729–1736. https://doi.org/10.1016/j.electacta.2010.09.023

    Article  CAS  Google Scholar 

  34. Tan L, Allen TR (2010) Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 52:548–554. https://doi.org/10.1016/j.corsci.2009.10.013

    Article  CAS  Google Scholar 

  35. Machao CDC, Doatus U, Milagre MX et al (2021) How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding. Mater Charact 174:111025. https://doi.org/10.1016/j.matchar.2021.111025

    Article  CAS  Google Scholar 

  36. Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N (2014) Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution. Corros Sci 87:504–516. https://doi.org/10.1016/j.corsci.2014.07.018

    Article  CAS  Google Scholar 

  37. Ly R, Hartwig KT, Castaneda H (2018) Effects of strain localization on the corrosion behavior of ultra-fine grained aluminium alloy AA6061. Corros Sci 139:47–57. https://doi.org/10.1016/j.corsci.2018.04.023

    Article  CAS  Google Scholar 

  38. Chen Y, Wang YQ, Zhou L, Meng GZ, Liu B, Wang JY, Shao YW, Jiang JT (2020) Macro-galvanic effect and its influence on corrosion behaviors of friction stir welding joint of 7050–T76 Al alloy. Corros Sci 164:108360. https://doi.org/10.1016/j.corsci.2019.108360

    Article  CAS  Google Scholar 

  39. Li S, Dong HG, Lei S, Li P, Ye F (2017) Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld. Corros Sci 123:243–255. https://doi.org/10.1016/j.corsci.2017.05.007

    Article  CAS  Google Scholar 

  40. Hoar TP (1967) The production and breakdown of the passivity of metals. Corros Sci 7:341–355. https://doi.org/10.1016/S0010-938X(67)80023-4

    Article  CAS  Google Scholar 

  41. Yang TJ, Li GM, Chen S, Chang WS, Chen XQ (2010) Self-catalytic action in pitting propagation process of low alloy steels. Corros Prot 31(540–541):569

    Google Scholar 

  42. Wang Y (2013) An experiment-based investigation on surface corrosion resistance behaviors of aluminum alloy 7050–T7451 after end milling. P I Mech Eng J-J Eng 227(11):1297–1305. https://doi.org/10.1177/1350650113491084

    Article  CAS  Google Scholar 

  43. Zhu YL (2008) Underscale corrosion behavior of carbon steel in a NaCl solution using a new occluded cavity cell for simulation. J Appl Electrochem 39:1017–1023. https://doi.org/10.1007/s10800-008-9749-2

    Article  CAS  Google Scholar 

  44. Liu W, Li Q, Li MC (2017) Corrosion behaviour of hot-dip Al–Zn–Si and Al–Zn–Si–3Mg coatings in NaCl solution. Corros Sci 121:72–83. https://doi.org/10.1016/j.corsci.2017.03.013

    Article  CAS  Google Scholar 

  45. Li S, Dong HG, Li P et al (2018) Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy. Corros Sci 131:278–280. https://doi.org/10.1016/j.corsci.2017.12.004

    Article  CAS  Google Scholar 

  46. Liu GL, Fang GL (2009) Grain-boundary segregation and corrosion mechanism of Al-Zn-Mg-Cu ultra high strength aluminum alloys. Rare Metal Mat Eng 38(9):1598–1601

    CAS  Google Scholar 

  47. Mansfeld F (1971) Area relationships in galvanic corrosion. Corrosion 27:436–442. https://doi.org/10.5006/0010-9312-27.10.436

    Article  CAS  Google Scholar 

  48. Mansfeld F, Kenkel J (1975) Galvanic corrosion of Al alloys-III. The effect of area ratio. Corros Sci 15:239–250. https://doi.org/10.1016/S0010-938X(75)80019-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51674060) and the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Dong, H., Wang, Y. et al. Effect of Zn coating on microstructure and corrosion behavior of dissimilar joints between aluminum alloy and steel by refilled friction stir spot welding. J Appl Electrochem 52, 85–102 (2022). https://doi.org/10.1007/s10800-021-01610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01610-9

Keywords

Navigation