Skip to main content

Advertisement

Log in

On the deconvolution of the concurrent cathodic processes with cobalt deposition onto graphite from feebly acidic bath

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition of non-precious metal group elements (NPG) is widely utilized to produce electrode materials for specific electrocatalytic reactions. The efficiency of cobalt electrodeposition on graphite substrate is largely affected by two concurrent cathodic processes: the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER). The contribution of the currents, originated from the ORR and the HER to the overall recorded cathodic current, hampers the fitting of current transient data of cobalt electrodeposition by Scharifker and Mostany model and the determination of the nucleation mechanism. The recent model proposed by Altimari attempted to deconvolute the observed cathodic current of cobalt electrodeposition into its major components. This study applied the mathematical model of Altimari to the Co electrodeposition from 0.05 M CoCl2 solution without and with 0.05 M sodium citrate. The main purpose of this application is to exclude the contribution of HER current from the total cathodic current. Consequently, the extracted component of the deposition current (ID) fits nicely the Scharifker model for the instantaneous nucleation mechanism of cobalt in the presence of citrate ions. Moreover, our results demonstrate that the cobalt deposition in absence of citrate is initiated by larger contribution of the progressive nucleation mechanism.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wen W, Wu J-M, Tu J-P (2012) A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries. J Alloy Compd 513:592–596

    Article  CAS  Google Scholar 

  2. Lang J, Yan X, Xue Q (2011) Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. J Power Sources 196(18):7841–7846

    Article  CAS  Google Scholar 

  3. Jiang T, Luan W, Wu S (2019) Co-based fuel cell cathode electrocatalyst for both acid and alkaline environment. Energy Procedia 158:2372–2377

    Article  CAS  Google Scholar 

  4. Kepenienė V, Tamašauskaitė-Tamašiūnaitė L, Jablonskienė J, Vaičiūnienė J, Kondrotas R, Juškėnas R, Norkus E (2014) Investigation of graphene supported platinum-cobalt nanocomposites as electrocatalysts for ethanol oxidation. J Electrochem Soc 161(14):F1354–F1359

    Article  CAS  Google Scholar 

  5. Jeong B, Uhm S, Lee J (2010) Iron-cobalt modified electrospun carbon nanofibers as oxygen reduction catalysts in alkaline fuel cells. ECS Trans 33(1):1757–1767

    Article  CAS  Google Scholar 

  6. Song S, Bao H, Lin X, Du X-L, Zhou J, Zhang L, Chen N, Hu J, Wang J-Q (2019) Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst. J Energy Chem 42:5–10

    Article  Google Scholar 

  7. Liu L, Ou Y, Gao D, Yang L, Dong H, Xiao P, Zhang Y (2018) Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation. J Power Sources 396:395–403

    Article  CAS  Google Scholar 

  8. Bergmann A, Martinez-Moreno E, Teschner D, Chernev P, Gliech M, De Araújo JF, Reier T, Dau H, Strasser P (2015) Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun 6:8625

    Article  CAS  PubMed  Google Scholar 

  9. Ullah N, Zhao W, Lu X, Oluigbo CJ, Shah SA, Zhang M, Xie J, Xu Y (2019) In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER. Electrochim Acta 298:163–171

    Article  CAS  Google Scholar 

  10. He P, Yu XY, Lou XW (2017) Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56(14):3897–3900

    Article  CAS  Google Scholar 

  11. Asadizadeh S, Amirnasr M, Meghdadi S, Tirani FF, Schenk K (2018) Facile synthesis of Co3O4 nanoparticles from a novel tetranuclear cobalt (III) complex. Application as efficient electrocatalyst for oxygen evolution reaction in alkaline media. Int J Hydrogen Energy 43(10):4922–4931

    Article  CAS  Google Scholar 

  12. Yu C, Lu J, Luo L, Xu F, Shen PK, Tsiakaras P, Yin S (2019) Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim Acta 301:449–457

    Article  CAS  Google Scholar 

  13. Sadike T, Ding J-R, Kim K-S, Park D-W (2019) Electrodeposition of cobalt-phosphate oxygen evolution catalyst on inert electrode for electrolysis. J Nanosci Nanotechnol 19(2):1006–1009

    Article  CAS  PubMed  Google Scholar 

  14. Nan K, Du H, Su L, Li CM (2018) Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction. Chem Select 3(25):7081–7088

    CAS  Google Scholar 

  15. Narayanan R (2007) Chimica OGGI-Chem Today 25:84–86

    CAS  Google Scholar 

  16. NarayananEl-Sayed R (2005) J Phys Chem 109:12663–12676

    Article  CAS  Google Scholar 

  17. Correia A, Machado S, Avaca L (2000) Direct observation of overlapping of growth centres in Ni and Co electrocrystallisation using atomic force microscopy. J Electroanal Chem 488(2):110–116

    Article  CAS  Google Scholar 

  18. Kim SS, Kim C, Lee H (2010) Shape-and composition-controlled Pt–Fe–Co nanoparticles for electrocatalytic methanol oxidation. Top Catal 53(7–10):686–693

    Article  CAS  Google Scholar 

  19. Schiavi PG, Altimari P, Zanoni R, Pagnanelli F (2016) Morphology-controlled synthesis of cobalt nanostructures by facile electrodeposition: transition from hexagonal nanoplatelets to nanoflakes. Electrochim Acta 220:405–416

    Article  CAS  Google Scholar 

  20. Pagnanelli F, Altimari P, Bellagamba M, Granata G, Moscardini E, Schiavi PG, Toro L (2015) Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim Acta 155:228–235

    Article  CAS  Google Scholar 

  21. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  PubMed  Google Scholar 

  22. Hosono E, Fujihara S, Honma I, Zhou H (2005) Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. J Mater Chem 15(19):1938–1945

    Article  CAS  Google Scholar 

  23. Huang K, Bi K, Xu J, Liang C, Lin S, Wang W, Yang T, Du Y, Zhang R, Yang H (2015) Novel graphite-carbon encased tungsten carbide nanocomposites by solid-state reaction and their ORR electrocatalytic performance in alkaline medium. Electrochim Acta 174:172–177

    Article  CAS  Google Scholar 

  24. Soliman AB, Abdel-Samad HS, Rehim SSA, Ahmed MA, Hassan HH (2016) High performance nano-Ni/graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J Power Sour 325:653–663

    Article  CAS  Google Scholar 

  25. Soliman AB, Abdel-Samad HS, Rehim SSA, Hassan HH (2016) Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices. Sci Rep 6:22056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gabe D (1997) The role of hydrogen in metal electrodeposition processes. J Appl Electrochem 27(8):908–915

    Article  CAS  Google Scholar 

  27. Scharifker B, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth: part I. Number density of active sites and nucleation rates per site. J Electroanal Chem Interfacial Electrochem 177(1–2):13–23

    Article  CAS  Google Scholar 

  28. Serruya A, Mostany J, Scharifker BR (1993) Spatial distributions and saturation number densities of lead nuclei deposited on vitreous carbon electrodes. J Chem Soc Faraday Trans 89(2):255–261

    Article  CAS  Google Scholar 

  29. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116(3):2322–2329

    Article  CAS  Google Scholar 

  30. Rezaei M, Tabaian SH, Haghshenas DF (2013) Electrochemical nucleation of palladium on graphene: a kinetic study with an emphasis on hydrogen co-reduction. Electrochim Acta 87:381–387

    Article  CAS  Google Scholar 

  31. Lai SC, Lazenby RA, Kirkman PM, Unwin PR (2015) Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces. Chem Sci 6(2):1126–1138

    Article  CAS  PubMed  Google Scholar 

  32. Palomar-Pardavé M, Scharifker B, Arce E, Romero-Romo M (2005) Nucleation and diffusion-controlled growth of electroactive centers: reduction of protons during cobalt electrodeposition. Electrochim Acta 50(24):4736–4745

    Article  CAS  Google Scholar 

  33. Milchev A, Zapryanova T (2006) Nucleation and growth of copper under combined charge transfer and diffusion limitations: part I. Electrochim Acta 51(14):2926–2933

    Article  CAS  Google Scholar 

  34. Milchev A, Zapryanova T (2006) Nucleation and growth of copper under combined charge transfer and diffusion limitations—part II. Electrochim Acta 51(23):4916–4921

    Article  CAS  Google Scholar 

  35. Altimari P, Schiavi PG, Rubino A, Pagnanelli F (2019) Electrodeposition of cobalt nanoparticles: an analysis of the mechanisms behind the deviation from three-dimensional diffusion-control. J Electroanal Chem 851:113413

    Article  CAS  Google Scholar 

  36. Altimari P, Pagnanelli F (2016) Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochim Acta 206:116–126

    Article  CAS  Google Scholar 

  37. Altimari P, Pagnanelli F (2016) Electrochemical nucleation and three-dimensional growth under mixed kinetic-diffusion control: analytical approximation of the current transient. Electrochim Acta 205:113–117

    Article  CAS  Google Scholar 

  38. Kobayashi Y, Horie M, Konno M, Rodríguez-González B, Liz-Marzán LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem B 107(30):7420–7425

    Article  CAS  Google Scholar 

  39. Wang R-T, Kong L-B, Lang J-W, Wang X-W, Fan S-Q, Luo Y-C, Kang L (2012) Mesoporous Co3O4 materials obtained from cobalt-citrate complex and their high capacitance behavior. J Power Sources 217:358–363

    Article  CAS  Google Scholar 

  40. El-Jemni MA, Abdel-Samad HS, Essa AS, Hassan HH (2019) Controlled electrodeposited cobalt phases for efficient OER catalysis, RRDE and eQCM studies. Electrochimica Acta 313:403–414

    Article  CAS  Google Scholar 

  41. Popov K, Maksimović M, Nakić V, Spasojević M (1982) Fundamental aspects of pulsating current metal electrodeposition IV: Tafel equation in the deposition of metals by a pulsating current. Surf Technol 15(2):161–165

    Article  CAS  Google Scholar 

  42. Noninski C, Veleva L, Noninski V (1985) Influence of the continuous mechanical renewal of the electrode surface on the effective activation energy of copper deposition on a copper cathode in the Tafel potential region. Surf Technol 25(2):135–139

    Article  CAS  Google Scholar 

  43. Noninski V (1997) Magnetic field effect on copper electrodeposition in the Tafel potential region. Electrochim Acta 42(2):251–254

    Article  CAS  Google Scholar 

  44. Fletcher S (2009) Tafel slopes from first principles. J Solid State Electrochem 13(4):537–549

    Article  CAS  Google Scholar 

  45. Uwitonze N, Zhou D, Lei J, Chen W, Zuo XQ, Cai J, Chen Y-X (2018) The high Tafel slope and small potential dependence of activation energy for formic acid oxidation on a Pd electrode. Electrochim Acta 283:1213–1222

    Article  CAS  Google Scholar 

  46. Conway B, Tilak B (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47(22–23):3571–3594

    Article  CAS  Google Scholar 

  47. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801

    Article  PubMed  PubMed Central  Google Scholar 

  48. Da Silva LM, De Faria LA, Boodts JF (2003) Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim Acta 48(6):699–709

    Article  Google Scholar 

  49. Shinde SS, Sami A, Lee JH (2015) Nitrogen-and phosphorus-doped nanoporous graphene/graphitic carbon nitride hybrids as efficient electrocatalysts for hydrogen evolution. ChemCatChem 7(23):3873–3880

    Article  CAS  Google Scholar 

  50. Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 42(16):11053–11077

    Article  CAS  Google Scholar 

  51. Garcia E, Santos J, Pereira E, Freitas M (2008) Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J Power Sour 185(1):549–553

    Article  CAS  Google Scholar 

  52. Masdek NRN, Alfantazi AM (2014) An EQCM study on the influence of saccharin on the corrosion properties of nanostructured cobalt and cobalt-iron alloy coatings. J Solid State Electrochem 18(6):1701–1716

    Article  CAS  Google Scholar 

  53. Heli H, Pishahang J (2014) Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim Acta 123:518–526

    Article  CAS  Google Scholar 

  54. Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137(7):2688–2694

    Article  CAS  PubMed  Google Scholar 

  55. Lupi C, Dell’Era A, Pasquali M (2009) Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrogen Energy 34(5):2101–2106

    Article  CAS  Google Scholar 

  56. Kotsakis N, Raptopoulou C, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, Kiss T, Salifoglou A (2003) Correlations of synthetic, spectroscopic, structural, and speciation studies in the biologically relevant cobalt (II)− citrate system: the tale of the first aqueous dinuclear cobalt (II)− citrate complex. Inorg Chem 42(1):22–31

    Article  CAS  PubMed  Google Scholar 

  57. Frank A, Sumodjo PA (2014) Electrodeposition of cobalt from citrate containing baths. Electrochim Acta 132:75–82

    Article  CAS  Google Scholar 

  58. Berkh O, Burstein L, Shacham-Diamand Y, Gileadi E (2011) The chemical and electrochemical activity of citrate on Pt electrodes. J Electrochem Soc 158(6):F85–F91

    Article  CAS  Google Scholar 

  59. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  60. Ustarroz J, Hammons JA, Altantzis T, Hubin A, Bals S, Terryn H (2013) A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135(31):11550–11561

    Article  CAS  PubMed  Google Scholar 

  61. Hassan HH (2001) Corrosion behaviour of zinc in sodium perchlorate solutions. Appl Surf Sci 174(3–4):201–209

    Article  CAS  Google Scholar 

  62. Gunawardena G, Hills G, Montenegro I, Scharifker B (1982) Electrochemical nucleation: part I. General considerations. J Electroanal Chem Interfacial Electrochem 138(2):225–239

    Article  CAS  Google Scholar 

  63. Gunawardena G, Hills G, Montenegro I (1982) Electrochemical nucleation: part II. The electrodeposition of silver on vitreous carbon. J Electroanal Chem Interfacial Electrochem 138(2):241–254

    Article  CAS  Google Scholar 

  64. Gunawardena G, Hills G, Montenegro I, Scharifker B (1982) Electrochemical nucleation: part III. The electrodeposition of mercury on vitreous carbon. J Electroanal Chem Interfacial Electrochem 138(2):255–271

    Article  CAS  Google Scholar 

  65. Floate S, Hyde M, Compton RG (2002) Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound. J Electroanal Chem 523(1–2):49–63

    Article  CAS  Google Scholar 

  66. Grujicic D, Pesic B (2006) Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions. Electrochim Acta 51(13):2678–2690

    Article  CAS  Google Scholar 

  67. Mondal S, Aravindan N, Sangaranarayanan M (2019) Controlled growth of polypyrrole microtubes on disposable pencil graphite electrode and their supercapacitor behavior. Electrochimica Acta 324:134875

    Article  CAS  Google Scholar 

  68. Palomar-Pardavé M, Mostany J, Muñoz-Rizo R, Botello LE, Aldana-González J, Arce-Estrada EM, de Oca-Yemha MGM, Ramírez-Silva MT, Romo MR (2019) Electrochemical study and physicochemical characterization of iron nanoparticles electrodeposited onto HOPG from Fe (III) ions dissolved in the choline chloride-urea deep eutectic solvent. J Electroanal Chem 851:113453

    Article  CAS  Google Scholar 

  69. Lukaczynska M, Ceglia A, Van Den Bergh K, De Strycker J, Terryn H, Ustarroz J (2019) Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochim Acta 319:690–704

    Article  CAS  Google Scholar 

  70. Prados A, Ranchal R (2019) Use of light for the electrochemical deposition of Bi on n-GaAs substrates. Electrochim Acta 316:113–124

    Article  CAS  Google Scholar 

  71. Hölzle M, Retter U, Kolb D (1994) The kinetics of structural changes in Cu adlayers on Au (111). J Electroanal Chem 371(1–2):101–109

    Article  Google Scholar 

  72. Vanpaemel J, van der Veen MH, De Gendt S, Vereecken PM (2013) Enhanced nucleation of Ni nanoparticles on TiN through H3BO3-mediated growth inhibition. Electrochim Acta 109:411–418

    Article  CAS  Google Scholar 

  73. Lide DR (2003) CRC Handbook of Chemistry and Physics (84th ed). New York: CRC Press

    Google Scholar 

  74. Hossain M, Tryk D, Yeager E (1989) The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochim Acta 34(12):1733–1737

    Article  CAS  Google Scholar 

  75. Besenhard J, Möhwald H, Nickl J (1980) Electronic conductivity and structure of DMSO-solvated A+-and NR4+-graphite intercalation compounds. Carbon 18(6):399–405

    Article  CAS  Google Scholar 

  76. Belevskii S, Cesiulis H, Tsyntsaru N, Dikusar A (2010) The role of mass transfer in the formation of the composition and structure of CoW coatings electrodeposited from citrate solutions. Surf Eng Appl Electrochem 46(6):570–578

    Article  Google Scholar 

  77. Abd El Rehim SS, Abd El Wahaab SM, Ibrahim MA, Dankeria MM (1998) Electroplating of cobalt from aqueous citrate baths. J Chem Technol Biotechnol Int Res Process EnvironAND Clean Technol 73(4):369–376

    CAS  Google Scholar 

  78. Rezaei M, Tabaian SH, Haghshenas DF (2012) A kinetic description of Pd electrodeposition under mixed control of charge transfer and diffusion. J Electroanal Chem 687:95–101

    Article  CAS  Google Scholar 

  79. Ji C, Oskam G, Searson PC (2001) Electrodeposition of copper on silicon from sulfate solution. J Electrochem Soc 148(11):C746

    Article  CAS  Google Scholar 

  80. Radisic A, Ross F, Searson P (2006) In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15):7862–7868

    Article  CAS  PubMed  Google Scholar 

  81. Radisic A, Vereecken P, Searson P, Ross F (2006) The morphology and nucleation kinetics of copper islands during electrodeposition. Surf Sci 600(9):1817–1826

    Article  CAS  Google Scholar 

  82. Oskam G, Searson PC (2000) Electrochemistry of gold deposition on n-Si (100). J Electrochem Soc 147(6):2199

    Article  CAS  Google Scholar 

  83. Serruya A, Mostany J, Scharifker B (1999) The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes. J Electroanal Chem 464(1):39–47

    Article  CAS  Google Scholar 

  84. Cao Y, West AC (2002) Nucleation and three-dimensional growth: deviation from diffusion control. J Electrochem Soc 149(4):C223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Egyptian Ministry of Scientific Research through Project # 28950 entitled “Fabrication of innovative efficient low-cost fuel cell electrodes” funded by Science and Technology Development Fund (STDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy H. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Jemni, M.A., Abdel-Samad, H.S. & Hassan, H.H. On the deconvolution of the concurrent cathodic processes with cobalt deposition onto graphite from feebly acidic bath. J Appl Electrochem 51, 1705–1719 (2021). https://doi.org/10.1007/s10800-021-01606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01606-5

Keywords

Navigation