Skip to main content

Advertisement

Log in

Highly sensitive nanoplatform based on green gold sononanoparticles for phenol determination in olive oil

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Here, we describe a novel, fast, simple and green method for synthesis of gold sononanoparticles (AuSNPs) employing three different parts of Geranium (Pelargonium graveolens) extracts such as stems (AuSNPs-G.S), leaves (AuSNPs-G.L) and the mixture of both (AuSNPs-G.M), in which plant biomaterials were used as reducing and capping agents using a high energy ultrasound. The resulting AuSNPs were characterized using a wide range of instrumental techniques including UV–Vis spectrophotometry, FTIR, STEM, TEM, SEM, and EDS. The formation of AuSNPs was confirmed by UV–Vis, showing an absorption peak in the range of 532–540 nm. The FTIR analysis identifies the interactions between gold and the bioactive molecules implicated in nanoparticle synthesis. The STEM, TEM and SEM results determine the morphology of the AuSNPs responsible for the three different extracts in the synthesis process. Biosynthesized AuSNPs have an average size of 16–33 nm with varied morphology. Then, for the first time we have demonstrated an eco-friendly sensor based on Sonogel-Carbon electrode (SNGCE) modified with biosynthesized AuSNPs-G.M for phenol determination. This sensor was showing a lower limit of detection of 67 nM (n = 3), excellent sensitivity, reproducibility, repeatability and high selectivity; thanks to the AuSNPs as cost-effective nanomaterials. Finally, the analytical sensor was applied successfully for the determination of phenol in real sample olive oil with a satsisfactory recoveries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okuyama H (2001) High n-6 to n-3 ratio of dietary fatty acids rather than serum cholesterol as a major risk factor for coronary heart disease. Eur J Lipid Sci Technol 103:418–422

    Article  CAS  Google Scholar 

  2. Carrasco-Pancorbo A, Cerretani L, Bendini A et al (2005) Analytical determination of polyphenols in olive oils. J Sep Sci 28:837–858

    Article  CAS  PubMed  Google Scholar 

  3. Capannesi C, Palchetti I, Mascini M, Parenti A (2000) Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem 71:553–562

    Article  CAS  Google Scholar 

  4. Fontana AR, Muñoz de Toro M, Altamirano JC (2011) One-step derivatization and preconcentration microextraction technique for determination of bisphenol A in beverage samples by gas chromatography- mass spectrometry. J Agric Food Chem 59:3559–3565

    Article  CAS  PubMed  Google Scholar 

  5. Hashemnia S, Khayatzadeh S, Hashemnia M (2012) Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode. J Solid State Electrochem 16:473–479

    Article  CAS  Google Scholar 

  6. Hernandez SR, Kergaravat SV, Pividori MI (2013) Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples. Talanta 106:399–407

    Article  CAS  PubMed  Google Scholar 

  7. Hammami A, Kuliček J, Raouafi N (2016) A naphthoquinone/SAM-mediated biosensor for olive oil polyphenol content. Food Chem 209:274–278

    Article  CAS  PubMed  Google Scholar 

  8. Ramya R, Sangaranarayanan MV (2012) Polypyrrole microfibres synthesized with Quillaja Saponin for sensing of catechol. Sens Actuators B 173:40–51

    Article  CAS  Google Scholar 

  9. Gu BX, Xu CX, Zhu GP et al (2009) Tyrosinase immobilization on ZnO nanorods for phenol detection. J Phys Chem B 113:377–381

    Article  CAS  PubMed  Google Scholar 

  10. Yu J, Liu S, Ju H (2003) Mediator-free phenol sensor based on titania sol–gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514

    Article  CAS  PubMed  Google Scholar 

  11. Sha R, Puttapati SK, Srikanth VV, Badhulika S (2017) Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. J Electroanal Chem 785:26–32

    Article  CAS  Google Scholar 

  12. Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959

    Article  CAS  Google Scholar 

  13. Castro L, Blázquez ML, Muñoz JA et al (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116

    Article  CAS  PubMed  Google Scholar 

  14. Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  15. Shaik MR, Khan M, Kuniyil M et al (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913

    Article  CAS  Google Scholar 

  16. Ahmed S, Saifullah AM et al (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7

    Article  CAS  Google Scholar 

  17. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9:1–9

    Article  CAS  Google Scholar 

  18. Zhou Q, Zhou M, Li Q et al (2019) Facile biosynthesis and grown mechanism of gold nanoparticles in Pueraria lobata extract. Colloids Surf A 567:69–75

    Article  CAS  Google Scholar 

  19. Jebril S, Jenana RKB, Dridi C (2020) Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater Chem Phys 248:122898

    Article  CAS  Google Scholar 

  20. Cubillana-Aguilera LM, Franco-Romano M, Gil MLA et al (2011) New, fast and green procedure for the synthesis of gold nanoparticles based on sonocatalysis. Ultrason Sonochem 18:789–794

    Article  CAS  PubMed  Google Scholar 

  21. García-Guzmán JJ, López-Iglesias D, Marin M et al (2019) Electrochemical biosensors for antioxidants. In: Asiri AM, Khan R et al (eds) Advanced biosensors for health care applications. Elsevier, Amsterdam, pp 105–146

    Chapter  Google Scholar 

  22. Parashar UK, Saxena PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Digest J Nanomater Biostruct (DJNB) 4:1–8

    Google Scholar 

  23. Zhang NMY, Qi M, Wang Z et al (2019) One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sens Actuators B 286:429–436

    Article  CAS  Google Scholar 

  24. Bunz UH, Rotello VM (2010) Gold nanoparticle–fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int Ed 49:3268–3279

    Article  CAS  Google Scholar 

  25. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  26. Halas NJ, Lal S, Nordlander P, et al (2004) Nanoparticle-based all-optical sensors

  27. Du J, Singh H, Dong W et al (2018) Colorimetric detection of Listeria monocytogenes using one-pot biosynthesized flower-shaped gold nanoparticles. Sens Actuators B 265:285–292

    Article  CAS  Google Scholar 

  28. Franco-Romano M, Gil MLA, Palacios-Santander JM et al (2014) Sonosynthesis of gold nanoparticles from a geranium leaf extract. Ultrason Sonochem 21:1570–1577

    Article  CAS  PubMed  Google Scholar 

  29. del Mar C-R, Hidalgo-Hidalgo de Cisneros JL, Blanco E, Naranjo-Rodríguez I (2002) The Sonogel-Carbon electrode as a sol–gel graphite-based electrode. Anal Chem 74:2423–2427

    Article  CAS  Google Scholar 

  30. Cubillana-Aguilera LM, Palacios-Santander JM, Naranjo-Rodríguez I, Hidalgo-Hidalgo-de-Cisneros JL (2006) Study of the influence of the graphite powder particle size on the structure of the Sonogel-Carbon materials. J Sol-Gel Sci Technol 40:55–64

    Article  CAS  Google Scholar 

  31. Usman AI, Aziz AA, Noqta OA (2019) Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts. Mater Today 7:803–807

    CAS  Google Scholar 

  32. Sharopov FS, Zhang H, Setzer WN (2014) Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. Am J Essent Oils Nat Prod 2:13–16

    Google Scholar 

  33. Thangamani N, Bhuvaneshwari N (2019) Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett 732:136587

    Article  CAS  Google Scholar 

  34. Rashid S, Azeem M, Khan SA et al (2019) Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids Surf B 179:317–325

    Article  CAS  Google Scholar 

  35. Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79–92

    Article  CAS  PubMed  Google Scholar 

  36. Song T, Gao F, Zhang Y et al (2019) Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions. J Taiwan Inst Chem Eng 101:167–176

    Article  CAS  Google Scholar 

  37. Cai Z, Ye Y, Wan X et al (2019) Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials 9:835

    Article  CAS  PubMed Central  Google Scholar 

  38. Jiji SG, Gopchandran KG (2019) Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloid Interface Sci Commun 29:9–16

    Article  CAS  Google Scholar 

  39. Luna M, Zarzuela R, Mosquera MJ et al (2019) Biosynthesis of uniform ultra-small gold nanoparticles by aged Dracaena draco L. extracts. Colloids Surf A 581:123744

    Article  CAS  Google Scholar 

  40. Ghanam A, Lahcen AA, Amine A (2017) Electroanalytical determination of Bisphenol A: investigation of electrode surface fouling using various carbon materials. J Electroanal Chem 789:58–66

    Article  CAS  Google Scholar 

  41. Zhao G-H, Tang Y-T, Liu M-C et al (2007) Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at boron-doped diamond film electrode. Chin J Chem 25:1445–1450

    Article  CAS  Google Scholar 

  42. Goulart LA, Gonçalves R, Correa AA et al (2018) Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta 185:12

    Article  CAS  Google Scholar 

  43. Rijiravanich P, Aoki K, Chen J et al (2006) Micro-cylinder biosensors for phenol and catechol based on layer-by-layer immobilization of tyrosinase on latex particles: theory and experiment. J Electroanal Chem 589:249–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tunisian MHESR for supporting this work and the University of Sousse for the “Bourse d′alternance” fellowship awarded to Siwar Jebril. J.J. García-Guzmán greatly acknowledges Post doc scholarship entitled “Estancias en centros de Ayuda para la Realización de Estancias de Investigación en Universidades de Prestigio. UCA Internacional” and “Contrato Puente Posdoctorales” both framed in the Program of promotion and impulse of research and transfer of the University of Cadiz 2018–2019. Spanish authors greatly acknowledge Junta de Andalucía and Institute of Research on Electron Microscopy and Materials (IMEYMAT – BIOSENSEP project) for their financial support. Authors are also grateful to Banco de Santander (Spain), Aula del Estrecho and Oficina de Relaciones Internacionales of University of Cadiz for the support given through the International Collaboration Project: 003ENE2019: ‘Fortalecimiento de la colaboración en materia de investigación en el área de química con la Universidad de Sousse: Síntesis ecológica y caracterización de nanoestructuras metálicas. Aplicación en agricultura y medioambiente’, (Call 2018/2019 – Resolución del Rector de la Universidad de Cádiz UCA/R96REC/2018 de 31 de octubre de 2018). Finally, Spanish authors thank ‘Programa de fomento e impulso de la investigación y de la transferencia de la Universidad de Cádiz 2018-2019’ for the funds given through the project PR2018-070 (Proyectos de Investigación-Puente 2018).

Funding

Please, see Acknowledgements section.

Author information

Authors and Affiliations

Authors

Contributions

SJ did Conceptualization, Methodology, Investigation, Data curation, Writing- original draft, visualization. AS-P did Conceptualization, Methodology. JJG-G did Methodology, Investigation. LC-A did Validation, Resources. JMP-S did Conceptualization, Methodology, Validation, Writingreview and editing, Supervision, funding acquisition. CD did Conceptualization, Methodology, Writing-review and editing, Supervision, funding acquisition.

Corresponding authors

Correspondence to José María Palacios-Santander or Chérif Dridi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebril, S., Sierra-Padilla, A., García-Guzmán, J.J. et al. Highly sensitive nanoplatform based on green gold sononanoparticles for phenol determination in olive oil. J Appl Electrochem 51, 879–892 (2021). https://doi.org/10.1007/s10800-021-01544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01544-2

Keywords

Navigation