Skip to main content

Advertisement

Log in

Properties of an electroless copper process as a function of nickel and cyanide ion concentrations

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A cyanide-stabilized electroless copper plating process with nickel as a stress-regulating additive was investigated. Small amounts of nickel or cyanide increase the deposition rate, while large amounts of cyanide decrease the deposition rate. The steady-state mixed potential shifts by – 0.23 V when about 0.05 at.% nickel is co-plated with copper. Cyanide by itself does not change the mixed potential. If nickel is also present, cyanide causes an anodic shift by + 0.09 V. Nickel changes the stress during deposition towards tensile, while cyanide changes it towards compressive. Both nickel and cyanide accelerate the transition to steady-state plating conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nakaso, K. Yamanoi, T. Okamura, Y. Tsuru (1985) Electroless copper deposition solution, US Patent 4548644

  2. Lu J, Wang M, Deng X, Yan J, Yun J, Jiao S (2019) Evaluation of K3Fe(CN)6 on deposition behavior and structure of electroless copper plating. Electrochemistry 87:214–219

    Article  CAS  Google Scholar 

  3. Ghosh S (2019) Electroless copper deposition: a critical review. Thin Solid Films 669:641–658

    Article  CAS  Google Scholar 

  4. Bindra P, White JR (1990) Fundamental aspects of electroless copper plating, Ch. 12. In: Mallory GO, Hajdu JB (eds) Electroless plating fundamentals & applications. William Andrew, New York, pp 289–329

    Google Scholar 

  5. Bamberg S, Perry LK, Muir B, Abuzir A, Brüning F, Brüning R (2012) The effect of nickel on the strain evolution in chemical copper films. Thin Solid Films 520:6935–6941

    Article  CAS  Google Scholar 

  6. Li L-S, Li X-R, Zhao W-X, Ma Q, Lu X, Wang Z (2013) A Study of low temperature and low stress electroless copper plating bath. Int J Electrochem Sci 8:5191–5202

    CAS  Google Scholar 

  7. Sharma T, Landry AE, Leger A, Brown DA, Bernhard T, Zarwell S, Brüning F, Brüning R (2018) Nickel dependence of hydrogen generation, hydrogen co-deposition and film stress in an electroless copper process. Thin Solid Films 666:76–84

    Article  CAS  Google Scholar 

  8. Ballesteros JC, Chainet E, Ozil P, Meas Y, Trejo G (2011) Electrodeposition of copper from non-cyanide alkaline solution containing tartrate. Int J Electrochem Sci 6:2632–2651

    CAS  Google Scholar 

  9. Kochemirovky VA, Fateev SA, Logunov LS, Tumkin II, Safonov SV (2014) Laser-induced copper deposition with weak reducing agents. Int J Electrochem Sci 9:644–658

    Google Scholar 

  10. Shacham-Diamand Y, Dubin V, Angyal M (1995) Electroless copper deposition for ULSI. Thin Solid Films 262:93–103

    Article  CAS  Google Scholar 

  11. Veleva R (1986) Role of potassium ferrocyanide in electroless copper baths. Surf Coat Technol 29:87–93

    Article  CAS  Google Scholar 

  12. Schneble FW Jr, Zeblisky RJ, McCormack JF, Williamson JD (1968) Process for stabilizing autocatalytic metal plating solutions, US Patent 3403035

  13. Bittner A, Wanner M, Weil KG (1992) The role of the microstructure of copper deposits during electroless plating in formaldehyde containing alkaline baths. Comparison of fourier transform impedance spectroscopy and surface enhanced Raman spectroscopy. Ber Bunsenges Phys Chem 96:647-655

  14. Bernhard T, Zarwell S, Steinhäuser E, Kempa S, Brüning F (2019) The effect of Cu target pad roughness on the growth mode and void formation in electroless Cu films. In: International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, pp 1-7

  15. Nakahara S, Okinaka Y (1983) Microstructure and ductility of electroless copper deposits. Acta Metall 31:713–724

    Article  CAS  Google Scholar 

  16. Saubestre EB (1972) Stabilizing electroless copper solutions. Plating 59:563–566

    CAS  Google Scholar 

  17. Logan E, Sharma T, Brüning F, Zarwell S, Steinhäuser E, Bernhard T, Chen N, Brüning R (2017) The effect of Ni on the kinetics of electroless Cu film deposition. Thin Solid Films 626:131–139

    Article  CAS  Google Scholar 

  18. Brüning R, Sibley A, Sharma T, Brown DA, Demay T, Brüning F, Bernhard T (2014) Stress of electroless copper deposits on insulating and metal substrates. Thin Solid Films 565:136–142

    Article  Google Scholar 

  19. Pötzelberger I, Mardare CC, Uiberlacker LM, Hild S, Mardare AI, Hassel AW (2017) Electrocatalysis on copper-palladium alloys for amperometric formaldehyde sensing. RSC Adv 7:6031–6039

    Article  Google Scholar 

  20. Meerakker JE, Bakker JWG (1990) On the mechanism of electroless plating. Part 3. Electroless copper alloys. J Appl Electrochem 20:85–90

    Article  Google Scholar 

  21. Bernhard T, Bamberg S, Brüning F, Brüning R, Gregoriades LJ, Sharma T, Brown D, Klaus M, Genzel Ch (2013) Analysis of stress/strain in electroless copper films. Int Symp Microelectr 2013:26–30

    Article  Google Scholar 

  22. Underkofler WL, Zucconi TD (1974) Electroless copper plating, US Patent 3844799

  23. Enyo M (1986) Electrooxidation of formaldehyde on Cu + Ni alloy electrodes in alkaline solutions. J Electroanal Chem 201:47–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Stefan Schweder for carrying out XRF measurements. SEM images were prepared by Mr. James Ehrman.

Funding

This study was funded by Atotech Deutschland GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Brüning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.A., MacDonald, A.R., McCarron, E.A. et al. Properties of an electroless copper process as a function of nickel and cyanide ion concentrations. J Appl Electrochem 51, 795–802 (2021). https://doi.org/10.1007/s10800-021-01535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01535-3

Keywords

Navigation