Skip to main content
Log in

Stability of native point defects in α-Al2O3 under aqueous electrochemical conditions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The formation energies of native point defects in crystalline α-Al2O3 were investigated by combining first principles-based methods and theoretical models in a grand canonical framework. For defect formation reactions in this framework, the chemical potentials of chemical species and electrons can be constrained by the conditions of aqueous electrochemical systems, where liquid water is thermodynamically stable. Activation relaxation technique (ART) simulations using an empirical interatomic potential were implemented to discover candidates for stable configurations of point defects. Density functional theory (DFT) calculations were then used to confirm the accurate energetics of the candidate defect configurations. The results show that, except Al vacancies, the most stable defect configurations are generated by simply adding/removing atoms at particular high-symmetry sites. We also investigated the stability of these point defects as a function of the chemical potentials of both electron and oxygen. The results reveal that, at the conditions of thermodynamic stability for liquid water in aqueous electrochemical systems, Al vacancies as the most stable point defects in α-Al2O3 can be generated in exothermic defect formation reactions with negative formation energies. These thermodynamic tendencies provide critical insights into the nature of passive films formed under aqueous electrochemical conditions, particularly explaining of the formation of amorphous structures of passive alumina.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurishima K, Nabatame T, Shimizu M, Aikawa S, Tsukagoshi K, Ohi A, Chikyo T, Ogura A (2014) Influence of Al2O3 gate dielectric on transistor properties for IGZO thin film transistor. ECS Trans 61:345

    Article  CAS  Google Scholar 

  2. Zhang C, Xie D, Xu J-L, Li X-M, Sun Y-L, Dai R-X, Li X, Zhu H-W (2015) HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima. J Appl Phys 118:144301

    Article  Google Scholar 

  3. Stournara ME, Kumar R, Qi Y, Sheldon BW (2016) Ab initio diffuse-interface model for lithiated electrode interface evolution. Phys Rev E 94:012802

    Article  PubMed  Google Scholar 

  4. Lin Y-X, Liu Z, Leung K, Chen L-Q, Lu P, Qi Y (2016) Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J Power Sources 309:221

    Article  CAS  Google Scholar 

  5. Li Y, Leung K, Qi Y (2016) Computational exploration of the Li-electrode| electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc Chem Res 49:2363

    Article  CAS  PubMed  Google Scholar 

  6. Zuili D, Maurice V, Marcus P (1999) In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr (110) single-crystal surfaces. J Phys Chem B 103:7896

    Article  CAS  Google Scholar 

  7. Deng H, Nanjo H, Qian P, Santosa A, Ishikawa I, Kurata Y (2007) Potential dependence of surface crystal structure of iron passive films in borate buffer solution. Electrochim Acta 52:4272

    Article  CAS  Google Scholar 

  8. Foelske A, Kunze J, Strehblow H-H (2004) Initial stages of hydroxide formation and its reduction on Co (0 0 0 1) studied by in situ STM and XPS in 0.1 M NaOH. Surf Sci 554:10

    Article  CAS  Google Scholar 

  9. Seyeux A, Maurice V, Klein L, Marcus P (2006) In situ STM study of the effect of chloride on passive film on nickel in alkaline solution. J Electrochem Soc 153:B453

    Article  CAS  Google Scholar 

  10. Kunze J, Maurice V, Klein LH, Strehblow H-H, Marcus P (2004) In situ STM study of the duplex passive films formed on Cu (1 1 1) and Cu (0 0 1) in 0.1 M NaOH. Corros Sci 46:245

    Article  CAS  Google Scholar 

  11. Maurice V, Marcus P (2011) Adsorption layers and passive oxide films on metals, tribocorrosion of passive metals and coatings. Elsevier, Amsterdam, pp 29–64

    Book  Google Scholar 

  12. Braun W, Bader M, Holub-Krappe E, Haase J, Eichinger P (1987) Structural properties of native and ultra thin thermal oxides of silicon as studied by SEXAFS. Surf Interface Anal 10:250

    Article  CAS  Google Scholar 

  13. Seo JH, Ryu J-H, Lee DN (2003) Formation of crystallographic etch pits during AC etching of aluminum. J Electrochem Soc 150:B433

    Article  CAS  Google Scholar 

  14. Prokes S, Katz M, Twigg M (2014) Growth of crystalline Al2O3 via thermal atomic layer deposition: nanomaterial phase stabilization. APL Mater. 2:032105

    Article  Google Scholar 

  15. Broas M, Kanninen O, Vuorinen V, Tilli M, Paulasto-Krockel M (2017) Chemically stable atomic-layer-deposited Al2O3 films for processability. ACS Omega 2:3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Todorova M, Neugebauer J (2014) Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Phys Rev Appl 1:014001

    Article  Google Scholar 

  17. Chagarov EA, Kummel AC (2009a) Ab initio molecular dynamics simulations of properties of a-Al 2 O 3/vacuum and a-Zr O 2/vacuum vs a-Al 2 O 3/ Ge (100)(2\(\times\) 1) and a-Zr O 2/ Ge (100)(2\(\times\) 1) interfaces. J Chem Phys 130:124717

    Article  PubMed  Google Scholar 

  18. Chagarov EA, Kummel AC (2009b) Molecular dynamics simulation comparison of atomic scale intermixing at the amorphous Al2O3/semiconductor interface for a-Al2O3/Ge, a-Al2O3/InGaAs, and a-Al2O3/InAlAs/InGaAs. Surf Sci 603:3191

    Article  CAS  Google Scholar 

  19. Matsunaga K, Tanaka T, Yamamoto T, Ikuhara Y (2003) First-principles calculations of intrinsic defects in Al2O3. Phys Rev B 68:085110

    Article  Google Scholar 

  20. Hine N, Frensch K, Foulkes W, Finnis M (2009) Supercell size scaling of density functional theory formation energies of charged defects. Phys Rev B 79:024112

    Article  Google Scholar 

  21. Choi M, Janotti A, Van de Walle CG (2013) Native point defects and dangling bonds in \(\alpha\)-Al2O3. J Appl Phys 113:044501

    Article  Google Scholar 

  22. Lei Y, Gong Y, Duan Z, Wang G (2013) Density functional calculation of activation energies for lattice and grain boundary diffusion in alumina. Phys Rev B 87:214105

    Article  Google Scholar 

  23. Yang MY, Kamiya K, Magyari-Köpe B, Niwa M, Nishi Y, Shiraishi K (2013) Charge-dependent oxygen vacancy diffusion in Al2O3-based resistive-random-access-memories. Appl Phys Lett 103:093504

    Article  Google Scholar 

  24. Lei Y, Wang G (2015) Linking diffusion kinetics to defect electronic structure in metal oxides: charge-dependent vacancy diffusion in alumina. Scripta Mater 101:20

    Article  CAS  Google Scholar 

  25. French RH (1990) Electronic band structure of Al2O3, with comparison to Alon and AIN. J Am Ceram Soc 73:477

    Article  CAS  Google Scholar 

  26. Kuznetsov A, Abramov V (1991) VV Mu rk, BP Namozov. Sov. Phys. 33:1126

    Google Scholar 

  27. Barkema G, Mousseau N (1996) Event-based relaxation of continuous disordered systems. Phys Rev Lett 77:4358

    Article  CAS  PubMed  Google Scholar 

  28. Mousseau N, Barkema G (1998) Traveling through potential energy landscapes of disordered materials: the activation–relaxation technique. Phys Rev E 57:2419

    Article  CAS  Google Scholar 

  29. Malek R, Mousseau N (2000) Dynamics of Lennard–Jones clusters: a characterization of the activation–relaxation technique. Phys Rev E 62:7723

    Article  CAS  Google Scholar 

  30. Cances E, Legoll F, Marinica M-C, Minoukadeh K, Willaime F (2009) Some improvements of the activation–relaxation technique method for finding transition pathways on potential energy surfaces. J Chem Phys 130:114711

    Article  CAS  PubMed  Google Scholar 

  31. Machado-Charry E, Béland LK, Caliste D, Genovese L, Deutsch T, Mousseau N, Pochet P (2011) Optimized energy landscape exploration using the ab initio based activation–relaxation technique. J Chem Phys 135:034102

    Article  PubMed  Google Scholar 

  32. Todorova M, Neugebauer J (2015a) Connecting semiconductor defect chemistry with electrochemistry: impact of the electrolyte on the formation and concentration of point defects in ZnO. Surf Sci 631:190

    Article  CAS  Google Scholar 

  33. Todorova M, Neugebauer J (2015b) Identification of bulk oxide defects in an electrochemical environment. Faraday Discuss 180:97

    Article  CAS  PubMed  Google Scholar 

  34. Freysoldt C, Neugebauer J, Van de Walle CG (2009) Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett 102:016402

    Article  PubMed  Google Scholar 

  35. David RL (2005) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  36. Marcus Y (1987) The thermodynamics of solvation of ions. Part 2. The enthalpy of hydration at 298.15 K. J Chem Soc Faraday Trans 83:339

    Article  CAS  Google Scholar 

  37. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995

    Article  CAS  Google Scholar 

  38. Hölzl J, Schulte FK (1979) Work function of metals, solid surface physics. Springer, New York, pp 1–150

    Google Scholar 

  39. Kumar B, Kaushik BK, Negi Y (2014) Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J Mater Sci 25:1

    CAS  Google Scholar 

  40. Xu S, Jacobs RM, Nguyen HM, Hao S, Mahanthappa M, Wolverton C, Morgan D (2015) Lithium transport through lithium-ion battery cathode coatings. J Mater Chem A 3:17248

    Article  CAS  Google Scholar 

  41. Vashishta P, Kalia RK, Nakano A, Rino JP (2008) Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J Appl Phys 103:083504

    Article  Google Scholar 

  42. Plimpton S (1993) Fast parallel algorithms for short-range molecular dynamics, Fast parallel algorithms for short-range molecular dynamics, Tech. Rep. (Sandia National Labs., Albuquerque, NM (United States))

  43. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  44. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  45. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  46. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  47. David LR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  48. Santos R, Longhinotti E, Freire V, Reimberg R, Caetano E (2015) Elucidating the high-k insulator \(\alpha\)-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem Phys Lett 637:172

    Article  CAS  Google Scholar 

  49. NIST https://doi.org/10.18434/T4D303

  50. Chao C, Lin L, Macdonald D (1981) A point defect model for anodic passive films I. Film growth kinetics. J Electrochem Soc 128:1187

    Article  CAS  Google Scholar 

  51. Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139:3434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Sundar and L. Qi acknowledge support by the Mcubed Seed Funding at the University of Michigan, Ann Arbor (Project ID: 8586). This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE) Stampede2 at the TACC through allocation TG-DMR190035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, A., Qi, L. Stability of native point defects in α-Al2O3 under aqueous electrochemical conditions. J Appl Electrochem 51, 639–651 (2021). https://doi.org/10.1007/s10800-020-01526-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01526-w

Keywords

Navigation