Skip to main content
Log in

Zinc-doped iron oxide nanostructures for enhanced photocatalytic and antimicrobial applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple, cost-effective method of two-step anodization is used to prepare environmentally benign zinc-doped iron oxide nanostructures for photocatalytic and antimicrobial applications. The effect of zinc doping on the structure and morphology of iron oxide nanostructure is analysed with the help of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. A detailed analysis of the changes in the binding energy positions of Fe 2p, O 1s, Zn 2p and valence band maximum with variation in doping concentration is carried out with X-ray photoelectron spectroscopy. A combined analysis of valence band X-ray photoelectron spectra and optical reflectance spectra indicates a shift in Fermi level characteristic to a conversion from n-type in pure α-Fe2O3 to p-type in 5-s zinc-doped α-Fe2O3. The room-temperature electrical conductivity of the doped is improved by five orders compared to the undoped nanostructures. The zinc-doped iron oxide nanostructures with p-type conductivity are found to show high photocatalytic degradation efficiency for the organic dye methylene blue. Significant antimicrobial activity is observed with the nanostructures for the microbes Pseudomonas aeruginosa, Bacillus subtilis and E. coli.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jack RS, Ayoko GA, Adebajo MO, Frost RL (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut Res 22:7439–7449. https://doi.org/10.1007/s11356-015-4346-5

    Article  CAS  Google Scholar 

  2. Xu P, Ming G, Lian D et al (2012) Science of the Total environment use of iron oxide nanomaterials in wastewater treatment : a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  3. Zhong LS, Hu JS, Liang HP et al (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431. https://doi.org/10.1002/adma.200600504

    Article  CAS  Google Scholar 

  4. Ashraf S, Siddiqa A, Shahida S, Qaisar S (2019) Titanium-based nanocomposite materials for arsenic removal from water: a review. Heliyon 5:e01577. https://doi.org/10.1016/j.heliyon.2019.e01577

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Li Y, Cheng YF (2017) Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-05626-0

    Article  CAS  Google Scholar 

  6. Mallick P, Dash BN (2013) X-ray Diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanosci Nanotechnol 3:130–134. https://doi.org/10.5923/j.nn.20130305.04

    Article  CAS  Google Scholar 

  7. Li Y, Feng J, Li H et al (2016) Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays. Int J Hydrogen Energy 41:4096–4105. https://doi.org/10.1016/j.ijhydene.2016.01.027

    Article  CAS  Google Scholar 

  8. Zhang GY, Feng Y, Xu YY et al (2012) Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47:625–630. https://doi.org/10.1016/j.materresbull.2011.12.032

    Article  CAS  Google Scholar 

  9. Kumar M, Sharma A, Maurya IK et al (2019) Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. J Taibah Univ Sci 13:280–285. https://doi.org/10.1080/16583655.2019.1565437

    Article  Google Scholar 

  10. Stephen Inbaraj B, Tsai TY, Chen BH (2012) Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/13/1/015002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manna PK, Nickel R, Wroczynskyj Y et al (2018) Simple, hackable, size-selective, amine-functionalized Fe-oxide nanoparticles for biomedical applications. Langmuir 34:2748–2757. https://doi.org/10.1021/acs.langmuir.7b02822

    Article  CAS  PubMed  Google Scholar 

  12. Cornell RM, Schwertmann U (2003) Introduction to the iron oxides. Wiley, New York

    Book  Google Scholar 

  13. Long NV, Yang Y, Yuasa M et al (2014) Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment. RSC Adv 4:6383–6390. https://doi.org/10.1039/c3ra45925j

    Article  CAS  Google Scholar 

  14. Belle CJ, Bonamin A, Simon U et al (2011) Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens Actuators B 160:942–950. https://doi.org/10.1016/j.snb.2011.09.008

    Article  CAS  Google Scholar 

  15. Wu W, Xiao X, Zhang S et al (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114:16092–16103. https://doi.org/10.1021/jp1010154

    Article  CAS  Google Scholar 

  16. Shenoy MR, Ayyasamy S, Reddy MVRV et al (2019) Preparation and characterization of porous iron oxide dendrites for photocatalytic application. Solid State Sci 95:105939. https://doi.org/10.1016/j.solidstatesciences.2019.105939

    Article  CAS  Google Scholar 

  17. Wheeler DA, Wang G, Ling Y et al (2012) Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci 5:6682–6702. https://doi.org/10.1039/c2ee00001f

    Article  CAS  Google Scholar 

  18. Tamirat AG, Rick J, Dubale AA et al (2016) Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons 1:243–267. https://doi.org/10.1039/c5nh00098j

    Article  CAS  PubMed  Google Scholar 

  19. Nagaraj G, Irudayaraj A, Josephine RL (2019) Tuning the optical band gap of pure TiO2 via photon induced method. Optik 179:889–894. https://doi.org/10.1016/j.ijleo.2018.11.009

    Article  CAS  Google Scholar 

  20. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett. https://doi.org/10.1186/s11671-015-1034-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mushove T, Breault TM, Thompson LT (2015) Synthesis and characterization of hematite nanotube arrays for photocatalysis. Ind Eng Chem Res 54:4285–4292. https://doi.org/10.1021/ie504585q

    Article  CAS  Google Scholar 

  22. Cha HG, Noh HS, Kang MJ, Kang YS (2013) Photocatalysis: progress using manganese-doped hematite nanocrystals. New J Chem 37:4004–4009. https://doi.org/10.1039/c3nj00478c

    Article  CAS  Google Scholar 

  23. Bin ASA, Khan SB, Asiri AM (2014) Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res Lett 9:1–9. https://doi.org/10.1186/1556-276X-9-510

    Article  CAS  Google Scholar 

  24. Sundaramurthy J, Kumar PS, Kalaivani M et al (2012) Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv 2:8201–8208. https://doi.org/10.1039/c2ra20608k

    Article  CAS  Google Scholar 

  25. Zhang Z, Hossain MF, Takahashi T (2010) Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater Lett 64:435–438. https://doi.org/10.1016/j.matlet.2009.10.071

    Article  CAS  Google Scholar 

  26. Jung A, Jik Y (2011) “ Nanoantibiotics ” : a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  Google Scholar 

  27. Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9:1–17. https://doi.org/10.1186/1556-276X-9-373

    Article  CAS  Google Scholar 

  28. Ranghar S, Sirohi P, Verma P, Agarwal V (2014) Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 57:209–222

    Article  CAS  Google Scholar 

  29. Rajakumar G, Rahuman AA, Roopan SM et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A 91:23–29. https://doi.org/10.1016/j.saa.2012.01.011

    Article  CAS  Google Scholar 

  30. Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. https://doi.org/10.1021/es404232s

    Article  CAS  PubMed  Google Scholar 

  31. Lin QY, Lin Q, Zhang YQ et al (2017) Effect of modified iodine on defect structure and antibacterial properties of ZnO in visible light. Res Chem Intermed 43:5067–5081. https://doi.org/10.1007/s11164-017-3053-x

    Article  CAS  Google Scholar 

  32. Gomathi M, Rajkumar PV, Prakasam A (2018) Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity. Results Phys 10:858–864. https://doi.org/10.1016/j.rinp.2018.08.011

    Article  Google Scholar 

  33. Shebl RI, Farouk F, Azzazy HMES (2017) Effect of surface charge and hydrophobicity modulation on the antibacterial and antibiofilm potential of magnetic iron nanoparticles. J Nanomater. https://doi.org/10.1155/2017/3528295

    Article  Google Scholar 

  34. Wang L, Hu C, Shao L (2017) The-antimicrobial-activity-of-nanoparticles–present-situati. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rufus A, Sreeju N, Philip D (2016) Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv 6:94206–94217. https://doi.org/10.1039/c6ra20240c

    Article  CAS  Google Scholar 

  36. Saqib S, Munis MFH, Zaman W et al (2019) Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc Res Tech 82:415–420. https://doi.org/10.1002/jemt.23182

    Article  CAS  PubMed  Google Scholar 

  37. Gordon T, Perlstein B, Houbara O et al (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A 374:1–8. https://doi.org/10.1016/j.colsurfa.2010.10.015

    Article  CAS  Google Scholar 

  38. Joseph JA, Nair SB, John KA et al (2019) Aluminium doping in iron oxide nanoporous structures to tailor material properties for photocatalytic applications. J Appl Electrochem. https://doi.org/10.1007/s10800-019-01371-6

    Article  Google Scholar 

  39. Albu SP, Ghicov A, Schmuki P (2009) High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. Phys Status Solidi Rapid Res Lett 3:64–66. https://doi.org/10.1002/pssr.200802285

    Article  CAS  Google Scholar 

  40. Rozana M, Abdul Razak K, Yew CK et al (2016) Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film. J Mater Res 31:1681–1690. https://doi.org/10.1557/jmr.2016.206

    Article  CAS  Google Scholar 

  41. Sarma B, Jurovitzki AL, Smith YR et al (2014) Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT). J Power Sources 272:766–775. https://doi.org/10.1016/j.jpowsour.2014.07.022

    Article  CAS  Google Scholar 

  42. Sarkar S, Das R (2018) Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis. Indian J Pure Appl Phys 56:765–772

    Google Scholar 

  43. de Faria DLA, Silva SV, deOliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  44. Rahman G, Joo OS (2013) Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. J Mater Chem A 1:5554–5561. https://doi.org/10.1039/c3ta10553a

    Article  CAS  Google Scholar 

  45. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812. https://doi.org/10.1021/am1004943

    Article  CAS  Google Scholar 

  46. Yang H, Mao X, Guo Y et al (2010) Porous α-Fe2O3 nanostructures with branched topology: growth, formation mechanism, and properties. CrystEngComm 12:1842–1849. https://doi.org/10.1039/b921618a

    Article  CAS  Google Scholar 

  47. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42:4902–4907. https://doi.org/10.1021/es800036n

    Article  CAS  PubMed  Google Scholar 

  48. Chu D, Li K, Liu A et al (2018) Zn-doped hematite modified by graphene-like WS2: A p-type semiconductor hybrid photocathode for water splitting to produce hydrogen. Int J Hydrogen Energy 43:7307–7316. https://doi.org/10.1016/j.ijhydene.2018.02.152

    Article  CAS  Google Scholar 

  49. PIPREK J (2003) Electron energy bands. In: Semiconductor optoelectronic devices-introduction to physics and simulation. Academic Press, pp 13–48

  50. Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p -vacancy levels. Phys Rev B 12:15–19. https://doi.org/10.1103/PhysRevB.12.15

    Article  Google Scholar 

  51. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  52. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529. https://doi.org/10.1021/ac50019a016

    Article  CAS  Google Scholar 

  53. Hu X, Yu JC, Gong J et al (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19:2324–2329. https://doi.org/10.1002/adma.200602176

    Article  CAS  Google Scholar 

  54. Wang G, Ling Y, Wheeler DA et al (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509. https://doi.org/10.1021/nl202316j

    Article  CAS  PubMed  Google Scholar 

  55. De Los Santos DM, Aguilar T, Sánchez-Coronilla A et al (2014) Electronic and structural properties of highly aluminum ion doped TiO 2 nanoparticles: a combined experimental and theoretical study. ChemPhysChem 15:2267–2280. https://doi.org/10.1002/cphc.201402071

    Article  CAS  Google Scholar 

  56. Chen YC, Kuo CL, Hsu YK (2018) Facile preparation of Zn-doped hematite thin film as photocathode for solar hydrogen generation. J Alloys Compd 768:810–816. https://doi.org/10.1016/j.jallcom.2018.07.315

    Article  CAS  Google Scholar 

  57. Fujii T, de Groot FMF, Sawatzky GA et al (1999) In situ xps analysis of various iron oxide films grown by (formula presented)-assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202. https://doi.org/10.1103/PhysRevB.59.3195

    Article  CAS  Google Scholar 

  58. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of photoelectron spectroscopy. Phys Electron . https://doi.org/10.1002/sia.740030412

    Article  Google Scholar 

  59. Rahman H, Esthan C, Nair BG et al (2020) Band structure and diode characteristics of transparent pn-homojunction using delafossite CuInO2. J Phys . https://doi.org/10.1088/1361-6463/ab4757

    Article  Google Scholar 

  60. Nair SB, John KA, Joseph JA et al (2020) Influence of p-n junction mechanism and alumina overlayer on the photocatalytic performance of TiO2 nanotubes. Nanotechnology. https://doi.org/10.1088/1361-6528/ab8043

    Article  PubMed  Google Scholar 

  61. Ingler WB, Baltrus JP, Khan SUM (2004) Photoresponse of p-type zinc-doped iron(III) oxide thin films. J Am Chem Soc 126:10238–10239. https://doi.org/10.1021/ja048461y

    Article  CAS  PubMed  Google Scholar 

  62. Kuo C-L, Hsu Y-K, Lin Y-G (2014) Facile synthesis of p -type Zn-doped α-Fe2O3 films for solar water splitting. Sol Hydrog Nanotechnol IX 9176:91760N. https://doi.org/10.1117/12.2060703

    Article  Google Scholar 

  63. Shenoy MR, Ayyasamy S, Venkateshreddy M et al (2019) Preparation and characterization of porous iron oxide dendrites for photocatalytic application. Solid State Sci 95:105939. https://doi.org/10.1016/j.solidstatesciences.2019.105939

    Article  CAS  Google Scholar 

  64. Zulfiqar Ahmed MN, Chandrasekhar KB, Jahagirdar AA et al (2015) Photocatalytic activity of nanocrystalline ZnO, α-Fe2O3 and ZnFe2O4/ZnO. Appl Nanosci 5:961–968. https://doi.org/10.1007/s13204-014-0395-1

    Article  CAS  Google Scholar 

  65. de Melo EJ, de Mesquita JP, Pereira MC et al (2017) Synthesis and characterization of αFe2−xMxO3 (M = Co, Ni, Cu or Zn) photocatalysts for the degradation of the indigo carmine dye in water. Hyperfine Interact. https://doi.org/10.1007/s10751-017-1429-3

    Article  Google Scholar 

  66. Velev J, Bandyopadhyay A, Butler WH, Sarker S (2005) Electronic and magnetic structure of transition-metal-doped α -hematite. Phys Rev B 71:1–7. https://doi.org/10.1103/PhysRevB.71.205208

    Article  CAS  Google Scholar 

  67. Anjana PM, Bindhu MR, Umadevi M, Rakhi RB (2018) Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles. J Mater Sci Mater Electron 29:6040–6050. https://doi.org/10.1007/s10854-018-8578-2

    Article  CAS  Google Scholar 

  68. Behera SS, Patra JK, Pramanik K et al (2012) Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano Sci Eng 02:196–200. https://doi.org/10.4236/wjnse.2012.24026

    Article  CAS  Google Scholar 

  69. Veerapandian M, Yun K (2011) Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 90:1655–1667. https://doi.org/10.1007/s00253-011-3291-6

    Article  CAS  PubMed  Google Scholar 

  70. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295. https://doi.org/10.1113/expphysiol.1997.sp004024

    Article  CAS  PubMed  Google Scholar 

  71. Yemmireddy VK, Hung YC (2017) Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety—opportunities and challenges. Compr Rev Food Sci Food Saf 16:617–631. https://doi.org/10.1111/1541-4337.12267

    Article  CAS  PubMed  Google Scholar 

  72. Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther 1:1700033. https://doi.org/10.1002/adtp.201700033

    Article  CAS  Google Scholar 

  73. Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology 14:1–20. https://doi.org/10.1186/s12951-016-0225-6

    Article  CAS  Google Scholar 

  74. Zhang H, Chen G (2009) potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43:2905–2910. https://doi.org/10.1021/es803450f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author acknowledges Department of Science and Technology (DST) , Government of India for financial support vide reference number SR/WOS-A/ PM-7 /2017 under Woman Scientist Scheme (WOS-A) to carry out this work. Corresponding author acknowledges KSCSTE for funding through a major research project (Ref No: KSCSTE/5131/2017-SRSPS). The first author acknowledges Dr. Shinoj V.K, Department of Physics, Union Christian College, Aluva and DST –SERB (Ref No: ECR/ 2016/001708) for the optical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Reena Philip.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J.A., Nair, S.B., John, S.S. et al. Zinc-doped iron oxide nanostructures for enhanced photocatalytic and antimicrobial applications. J Appl Electrochem 51, 521–538 (2021). https://doi.org/10.1007/s10800-020-01512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01512-2

Keywords

Navigation