Skip to main content
Log in

Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, a new and simple electrochemical sensor platform comprising functionalized multi-walled carbon nanotube (f-MWCNT) decorated with green synthesized silver nanoparticles (AgNps)-based composite (AgNps/f-MWCNT) has been developed. The in situ green synthesis of AgNps was done using plant extract of Cinnamomum tamala. The sensor platform of AgNps/f-MWCNT was prepared on Indium tin oxide (ITO) coated glass substrate (AgNps/f-MWCNT/ITO) for highly sensitive and selective detection of bisphenol A (BPA). The morphological and structural changes of AgNps/f-MWCNT composite have been characterized through XRD, UV–Visible, Raman, FTIR and electron microscopy techniques. This fabricated sensor shows a wide linear range of 3.9 fM–102.4 nM, low limit of detection of 0.38 nM, and high sensitivity of 17.83 μA (log nM)−1 cm−2 [R2 = 0.978], which are found to be more superior as compared to previously reported sensors for BPA detection. The practical application of this sensor has also been successfully carried out in real samples such as tap water, packaged juice, and processed milk with their relative standard deviation and recoveries obtained in the range of 1.32-8.13 and 94–110%, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–77

    Article  CAS  PubMed  Google Scholar 

  2. Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P et al (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–40

    Article  CAS  PubMed  Google Scholar 

  3. Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 36(10):2149–73

    Article  CAS  PubMed  Google Scholar 

  4. Fuhrman VF, Tal A, Arnon S (2015) Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. J Hazard Mater 286:589–611

    Article  Google Scholar 

  5. Allsop TD, Neal R, Wang C, Nagel DA, Hine AV, Culverhouse P et al (2019) An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosensors Bioelectron 135:102–10

    Article  CAS  Google Scholar 

  6. Malone E, Elliott C, Kennedy D, Regan L (2010) Rapid confirmatory method for the determination of sixteen synthetic growth promoters and bisphenol A in bovine milk using dispersive solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B 878(15–16):1077–84

    Article  CAS  Google Scholar 

  7. Hiratsuka Y, Funaya N, Matsunaga H, Haginaka J (2013) Preparation of magnetic molecularly imprinted polymers for bisphenol A and its analogues and their application to the assay of bisphenol A in river water. J Pharmac Biomed Anal 75:180–5

    Article  CAS  Google Scholar 

  8. Kim Y, Jeon JB, Chang JY (2012) CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. J Mater Chem. 22(45):24075–80

    Article  CAS  Google Scholar 

  9. Zhao W, Sheng N, Zhu R, Wei F, Cai Z, Zhai M et al (2010) Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. J Hazard Mater 179(1–3):223–9

    Article  CAS  PubMed  Google Scholar 

  10. De Meulenaer B, Baert K, Lanckriet H, Van Hoed V, Huyghebaert A (2002) Development of an enzyme-linked immunosorbent assay for bisphenol A using chicken immunoglobulins. J Agricul Food Chem 50(19):5273–82

    Article  Google Scholar 

  11. Brett CM, Oliveira-Brett AM (2011) Electrochemical sensing in solution—origins, applications and future perspectives. J Solid State Electrochem 15(7–8):1487–94

    Article  CAS  Google Scholar 

  12. Mazzotta E, Malitesta C, Margapoti E (2013) Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes. Anal Bioanal Chem 405(11):3587–92

    Article  CAS  PubMed  Google Scholar 

  13. Cai R, Rao W, Zhang Z, Long F, Yin Y (2014) An imprinted electrochemical sensor for bisphenol A determination based on electrodeposition of a graphene and Ag nanoparticle modified carbon electrode. Anal Methods 6(5):1590–7

    Article  CAS  Google Scholar 

  14. Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV et al (2015) Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosensors Bioelectron 74:830–5

    Article  CAS  Google Scholar 

  15. Zhou Y, Yang L, Li S, Dang Y (2017) A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens Actuators B Chem 245:238–246

    Article  CAS  Google Scholar 

  16. Apodaca DC, Pernites RB, Ponnapati R, Del Mundo FR, Advincula RC (2011) Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A. Macromolecules. 44(17):6669–82

    Article  CAS  Google Scholar 

  17. Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–800

    Article  CAS  PubMed  Google Scholar 

  18. Britto PJ, Santhanam KS, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11(2):154–7

    Article  CAS  Google Scholar 

  19. Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  CAS  Google Scholar 

  20. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683):346–9

    Article  CAS  Google Scholar 

  21. Barsan MM, Ghica ME, Brett CM (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Analytica chimica acta. 881:1–23

    Article  CAS  PubMed  Google Scholar 

  22. Ghica ME, Ferreira GM, Brett CM (2015) Poly (thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem 19(9):2869–81

    Article  CAS  Google Scholar 

  23. Messaoud NB, Ghica ME, Dridi C, Ali MB, Brett CM (2017) Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors and Actuators B: Chem 253:513–22

    Article  Google Scholar 

  24. Yu A, Wang Q, Yong J, Mahon PJ, Malherbe F, Wang F et al (2012) Silver nanoparticle–carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochimica Acta 74:111–6

    Article  CAS  Google Scholar 

  25. Guo DJ, Li HL (2005) Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43(6):1259–64

    Article  CAS  Google Scholar 

  26. Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW et al (2008) Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly (amidoamine) and their antimicrobial effects. J Phys Chem C 112(48):18754–9

    Article  CAS  Google Scholar 

  27. Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos Part A: Appl Sci Manufact 42(8):961–7

    Article  Google Scholar 

  28. Mohan S, Oluwafemi OS, Songca SP, Rouxel D, Miska P, Lewu FB et al (2016) Completely green synthesis of silver nanoparticle decorated MWCNT and its antibacterial and catalytic properties. Pure Appl Chem 88(1–2):71–81

    Article  CAS  Google Scholar 

  29. Yusof Y, Zaidi MI, Johan MR. (2016) Enhanced structural, thermal, and electrical properties of multiwalled carbon nanotubes hybridized with silver nanoparticles. J Nanomater 2016

  30. Mishra AN, Bhadauria S, Gaur MS, Pasricha R, Kushwah BS (2010) Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol: Phys Chem 1(2):P118–P24

    Article  Google Scholar 

  31. Li L, Liu C, Liu Z, Tsao R, Liu S (2009) Identification of phenylethanoid glycosides in plant extract of Plantago asiatica L. by liquid chromatography-electrospray ionization mass spectrometry. Chinese J Chem 27(3):541–545

    Article  CAS  Google Scholar 

  32. Yin H, Zhou Y, Ai S, Han R, Tang T, Zhu L (2010) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchimica Acta 170(1–2):99–105

    Article  CAS  Google Scholar 

  33. Zhang L, Wen YP, Yao YY, Wang ZF, Duan XM, Xu JK (2014) Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chinese Chem Lett 25(4):517–22

    Article  CAS  Google Scholar 

  34. Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H (2012) Sensitivity and selectivity determination of bisphenol A using SWCNT–CD conjugate modified glassy carbon electrode. J Hazard Mater 199:111–8

    Article  PubMed  Google Scholar 

  35. Huang KJ, Liu YJ, Liu YM, Wang LL (2014) Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J Hazard Mater 276:207–15

    Article  CAS  PubMed  Google Scholar 

  36. Goulart LA, Gonçalves R, Correa AA, Pereira EC, Mascaro LH (2018) Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchimica Acta 185(1):12

    Article  Google Scholar 

  37. Zhang J, Au K, Zhu Z, O’shea S. (2004) Sol–gel preparation of poly (ethylene glycol) doped indium tin oxide thin films for sensing applications. Optic Mater 6(1):47–55

    Article  Google Scholar 

  38. Chauhan D, Kumar R, Panda AK, Solanki PR (2019) An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods. J Mater Res Technol 8(6):5490–5503

    Article  CAS  Google Scholar 

  39. Santos J, Silva A, Bretas R. Using the carbon nanotube (CNT)/CNT interaction to obtain hybrid conductive nanostructures. AIP Conference Proceedings: AIP Publishing LLC; p. 070021.

  40. Sankaran V, Chakraborty A, Jeyaprakash K, Ramar M, Chellappan DR (2015) Chemical analysis of leaf essential oil of Cinnamomum tamala from Arunachal Pradesh, India. J Chem Pharmac Sci 8(2):246–8

    CAS  Google Scholar 

  41. Dinh NX, Huy TQ, Le AT (2016) Multiwalled carbon nanotubes/silver nanocomposite as effective SERS platform for detection of methylene blue dye in water. J Sci: Adv Mater Dev 1(1):84–9

    Google Scholar 

  42. Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interf 5(17):8724–32

    Article  CAS  Google Scholar 

  43. Kaur H, Kaur S, Singh M (2013) Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity. Biologia. 68(6):1048–53

    Article  CAS  Google Scholar 

  44. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors. 19(2):392

    Article  Google Scholar 

  45. Ujjain SK, Bhatia R, Ahuja P, Attri P (2015) Highly conductive aromatic functionalized multi-walled carbon nanotube for inkjet printable high performance supercapacitor electrodes. PloS one 10(7)

  46. Jiang X, Gu J, Bai X, Lin L, Zhang Y (2009) The influence of acid treatment on multi‐walled carbon nanotubes. Pigment & Resin Technology

  47. Avilés F, Cauich-Rodríguez J, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47(13):2970–5

    Article  Google Scholar 

  48. Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RR, Rocha RP et al (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–26

    Article  CAS  Google Scholar 

  49. Fatin M, Ruslinda AR, Arshad MM, Hashim U, Norhafizah S, Farehanim M. Surface functionalization of multiwalled carbon nanotube for biosensor device application. 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014): IEEE; p. 377-9.

  50. Nouri E, Shahmiri M, Rezaie HR, Talayian F (2012) The effect of alumina content on the structural properties of ZrO2-Al2O3 unstabilized composite nanopowders. Int J Indus Chemi 3(1):17

    Article  Google Scholar 

  51. Gupta PK, Khan ZH, Solanki PR (2018) Improved electrochemical performance of metal doped Zirconia nanoparticles for detection of Ochratoxin-A. J Electroanal Chem 829:69–80

    Article  CAS  Google Scholar 

  52. Chauhan D, Solanki PR (2019) Hydrophilic and Insoluble Electrospun Cellulose Acetate Fiber-Based Biosensing Platform for 25-Hydroxy Vitamin-D3 Detection. ACS Appl Polymer Mater 1(7):1613–23

    Article  CAS  Google Scholar 

  53. Nie B, Stutzman J, Xie A (2005) A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys J 88(4):2833–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17(26):2679–94

    Article  CAS  Google Scholar 

  55. Kumar TV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165(8):B3006–B16

    Article  CAS  Google Scholar 

  56. Chauhan D, Gupta PK, Solanki PR (2018) Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D3 detection. Mater Sci Eng C 93:145–56

    Article  CAS  Google Scholar 

  57. Yadav AK, Dhiman TK, Lakshmi G, Berlina AN, Solanki PR (2020) A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite. Int J Biol Macromol 151:566–575

    Article  CAS  PubMed  Google Scholar 

  58. Yan X, Zhou C, Yan Y, Zhu Y (2015) A simple and renewable nanoporous gold-based electrochemical sensor for bisphenol a detection. Electroanalysis 27(12):2718–24

    Article  CAS  Google Scholar 

  59. Fernandes PM, Campiña JM, Silva AF (2020) A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A. Microchim Acta 187:1–10

    Article  Google Scholar 

  60. Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2017) Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochimica Acta 246:597–605

    Article  CAS  Google Scholar 

  61. Lin Y, Liu K, Liu C, Yin L, Kang Q, Li L et al (2014) Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochimica Acta. 133:492–500

    Article  CAS  Google Scholar 

  62. Filik H, Avan AA (2017) Electrochemical determination of bisphenol A based on poly (chromotropic acid) modified glassy carbon electrode. Curr Anal Chem 13(6):464–73

    Article  CAS  Google Scholar 

  63. Li H, Wang W, Lv Q, Xi G, Bai H, Zhang Q (2016) Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochem Commun 68:104–7

    Article  CAS  Google Scholar 

  64. Zheng Z, Du Y, Wang Z, Feng Q, Wang C (2013) Pt/graphene–CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst. 138(2):693–701

    Article  CAS  PubMed  Google Scholar 

  65. Wang Q, Wang Y, Liu S, Wang L, Gao F, Gao F et al (2012) Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode. Thin Solid Films 520(13):4459–64

    Article  CAS  Google Scholar 

  66. Tu X, Yan L, Luo X, Luo S, Xie Q (2009) Electroanalysis of bisphenol a at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode. Electroanalysis: Int J Devoted Fundamental Pract Aspects Electroanal 21(22):2491–2494

    CAS  Google Scholar 

  67. Su B, Shao H, Li N, Chen X, Cai Z, Chen X (2017) A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 166:126–32

    Article  CAS  PubMed  Google Scholar 

  68. Santana ER, de Lima CA, Piovesan JV, Spinelli A (2017) An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sensors and Actuators B: Chem 240:487–96

    Article  CAS  Google Scholar 

  69. Hao Y, Xiao F, Xiao-Xia C, Jin-Li Q, Xiao-Ling G, Na X et al (2017) Electrochemical determination of bisphenol A on a glassy carbon electrode modified with gold nanoparticles loaded on reduced graphene oxide-multi walled carbon nanotubes composite. Chinese J Anal Chem 45(5):713–20

    Article  Google Scholar 

  70. Wang W, Yang X, Gu YX, Ding CF, Wan J (2015) Preparation and properties of bisphenol A sensor based on multiwalled carbon nanotubes/Li 4 Ti5O12 modified electrode. Ionics. 21(3):885–93

    Article  CAS  Google Scholar 

Download references

Funding

The work done here is supported by the Department of Biotechnology (DBT), India-Indo-Russia project Indo-Russia (DBT/IC-2/Indo-Russia/2017-19/02) and Department of Science and Technology, (DST), India- BDTD/TDT/ 24/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima R. Solanki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Chauhan, D., Das Mukherjee, M. et al. Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J Appl Electrochem 51, 447–462 (2021). https://doi.org/10.1007/s10800-020-01511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01511-3

Keywords

Navigation