Skip to main content
Log in

Temperature dependence of aqueous-phase phenol adsorption on Pt and Rh

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Condensed/aqueous phase surface reactions such as electrocatalytic hydrogenation of bio-oil often involve reactant adsorption and displacement of adsorbed solvent molecules. The enthalpy and entropy of these adsorption processes will influence the kinetics of surface reactions in the condensed/aqueous phase. The value of the adsorption entropy will have a significant effect on how the reactant coverages vary as a function of temperature. Here, adsorption isotherms from 10 to 40 °C and van’t Hoff plots were constructed to directly extract the adsorption entropy and enthalpy of phenol, a bio-oil model compound, on Pt and Rh in aqueous media. We show that the effective adsorption entropy of phenol on Pt and Rh in aqueous phase is positive, in contrast to the negative entropy expected in gas phase. The positive entropy values in the aqueous phase are consistent with adsorbed water gaining a fraction of the entropy of bulk liquid water upon displacement by adsorbed phenol. Consequently, the phenol surface coverage is less dependent on temperature in the aqueous phase compared to the gas phase. The results here give insight to the way in which temperature impacts reaction rates for aqueous-phase phenol hydrogenation reaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Jung S, Karaiskakis AN, Biddinger EJ (2019) Enhanced activity for electrochemical hydrogenation and hydrogenolysis of furfural to biofuel using electrodeposited Cu catalysts. Catal Today 323:26–34. https://doi.org/10.1016/j.cattod.2018.09.011

    Article  CAS  Google Scholar 

  2. Song Y, Sanyal U, Pangotra D, Holladay JD, Camaioni DM, Gutiérrez OY, Lercher JA (2018) Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. J Catal 359:68–75. https://doi.org/10.1016/j.jcat.2017.12.026

    Article  CAS  Google Scholar 

  3. Biddinger EJ, Modestino MA (2020) Electro-organic syntheses for green chemical manufacturing. Electrochem Soc Interface 29:43–47. https://doi.org/10.1149/2.F06203IF

    Article  CAS  Google Scholar 

  4. Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM, Tessonnier JP, Li W (2017) Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J Am Chem Soc 139:14120–14128. https://doi.org/10.1021/jacs.7b06331

    Article  CAS  PubMed  Google Scholar 

  5. Sanyal U, Song Y, Singh N, Fulton JL, Herranz J, Jentys A, Gutiérrez OY, Lercher JA (2019) Structure sensitivity in hydrogenation reactions on Pt/C in aqueous-phase. ChemCatChem 11:575–582. https://doi.org/10.1002/cctc.201801344

    Article  CAS  Google Scholar 

  6. Carneiro J, Nikolla E (2019) Electrochemical conversion of biomass-based oxygenated compounds. Annu Rev Chem Biomol Eng 10:85–104. https://doi.org/10.1146/annurev-chembioeng-060718-030148

    Article  CAS  PubMed  Google Scholar 

  7. Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT (2020) Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production. Chemsuschem 13:4214–4237. https://doi.org/10.1002/cssc.202000987

    Article  CAS  PubMed  Google Scholar 

  8. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49:4273–4306. https://doi.org/10.1039/d0cs00041h

    Article  CAS  PubMed  Google Scholar 

  9. Sanyal U, Yuk SF, Koh K, Lee M-S, Stoerzinger K, Zhang D, Meyer LC, Lopez-Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V-A, Rousseau R, Gutiérrez OY, Lercher J (2020) Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew Chem. https://doi.org/10.1002/ange.202008178

    Article  Google Scholar 

  10. Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee M, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA et al (2020) Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00158

    Article  PubMed  Google Scholar 

  11. Sanyal U, Koh K, Meyer LC, Karkamkar A, Gutiérrez OY (2020) Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals. J Appl Electrochem. https://doi.org/10.1007/s10800-020-01464-7

    Article  Google Scholar 

  12. Weber RS, Holladay JE (2018) Modularized production of value-added products and fuels from distributed waste carbon-rich feedstocks. Engineering 4:330–335. https://doi.org/10.1016/j.eng.2018.05.012

    Article  CAS  Google Scholar 

  13. Chou P, Vannice MA (1987) Benzene hydrogenation over supported and unsupported palladium II. Reaction model J Catal 107:140–153. https://doi.org/10.1016/0021-9517(87)90279-X

    Article  CAS  Google Scholar 

  14. Singh N, Song Y, Gutiérrez OY, Camaioni DM, Campbell CT, Lercher JA (2016) Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal 6:7466–7470. https://doi.org/10.1021/acscatal.6b02296

    Article  CAS  Google Scholar 

  15. Singh N, Lee MS, Akhade SA, Cheng G, Camaioni DM, Gutiérrez OY, Glezakou VA, Rousseau R, Lercher JA, Campbell CT (2019) Impact of pH on aqueous-phase phenol hydrogenation catalyzed by carbon-supported Pt and Rh. ACS Catal 9:1120–1128. https://doi.org/10.1021/acscatal.8b04039

    Article  CAS  Google Scholar 

  16. Bondue CJ, Koper MTM (2019) Electrochemical reduction of the carbonyl functional group: the importance of adsorption geometry, molecular structure, and electrode surface structure. J Am Chem Soc 141:12071–12078. https://doi.org/10.1021/jacs.9b05397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bondue CJ, Calle-Vallejo F, Figueiredo MC, Koper MTM (2019) Structural principles to steer the selectivity of the electrocatalytic reduction of aliphatic ketones on platinum. Nat Catal 2:243–250. https://doi.org/10.1038/s41929-019-0229-3

    Article  CAS  Google Scholar 

  18. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  19. Hansen S, Mirkouei A, Diaz LA (2020) A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renew Sustain Energy Rev 118:109548. https://doi.org/10.1016/j.rser.2019.109548

    Article  CAS  Google Scholar 

  20. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sustain Energy Rev 58:1293–1307. https://doi.org/10.1016/j.rser.2015.12.146

    Article  CAS  Google Scholar 

  21. Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134:18109–18115. https://doi.org/10.1021/ja3080117

    Article  CAS  PubMed  Google Scholar 

  22. Singh N, Sanyal U, Fulton JL, Gutiérrez OY, Lercher JA, Campbell CT (2019) Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ X-ray absorption spectroscopy. ACS Catal 9:6869–6881. https://doi.org/10.1021/acscatal.9b01415

    Article  CAS  Google Scholar 

  23. Singh N, Campbell CT (2019) A simple bond-additivity model explains large decreases in heats of adsorption in solvents versus gas phase: a case study with phenol on Pt(111) in water. ACS Catal 9:8116–8127. https://doi.org/10.1021/acscatal.9b01870

    Article  CAS  Google Scholar 

  24. Bockris JO, Jeng KT (1992) In-situ studies of adsorption of organic compounds on platinum electrodes. J Electroanal Chem 330:541–581. https://doi.org/10.1016/0022-0728(92)80330-7

    Article  CAS  Google Scholar 

  25. Gileadi E (1966) Electrosorption of uncharged molecules on solid electrodes. J Electroanal Chem 11:137–151. https://doi.org/10.1016/0022-0728(66)80073-6

    Article  CAS  Google Scholar 

  26. Akinola J, Barth I, Goldsmith BR, Singh N (2020) Adsorption energies of oxygenated aromatics and organics on rhodium and platinum in aqueous phase. ACS Catal 10:4929–4941. https://doi.org/10.1021/acscatal.0c00803

    Article  CAS  Google Scholar 

  27. Goobes R, Goobes G, Campbell CT, Stayton PS (2006) Thermodynamics of statherin adsorption onto hydroxyapatite. Biochemistry 45:5576–5586. https://doi.org/10.1021/bi052321z

    Article  CAS  PubMed  Google Scholar 

  28. Soriaga MP, White JH, Hubbard AT (1983) Orientation of aromatic compounds adsorbed on platinum electrodes. The effect of temperature. J Phys Chem 87:3048–3054. https://doi.org/10.1021/j100239a018

    Article  CAS  Google Scholar 

  29. Song Y, Gutiérrez OY, Herranz J, Lercher JA (2016) Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl Catal B 182:236–246. https://doi.org/10.1016/j.apcatb.2015.09.027

    Article  CAS  Google Scholar 

  30. Sasaki K, Kunai A, Harada J, Nakabori S (1983) Electrolytic hydrogenation of phenols in aqueous acid solutions. Electrochim Acta 28:671–674. https://doi.org/10.1016/0013-4686(83)85062-2

    Article  CAS  Google Scholar 

  31. Wieckowski A, Sobrowski J, Zelenay P, Franaszczuk K (1981) Adsorption of acetic acid on platinum, gold and rhodium electrodes. Electrochim Acta 26:1111–1119. https://doi.org/10.1016/0013-4686(81)85086-4

    Article  CAS  Google Scholar 

  32. Vassiliev YB, Bagotzky VS, Khazova OA, Cherny VV, Meretsky AM (1979) Mechanism of adsorption, electroreduction and hydrogenation of compounds with ethylenic bonds on platinum and rhodium: Part I Kinetics of adsorption and electroreduction. J Electroanal Chem Interfacial Electrochem 98:253–272. https://doi.org/10.1016/S0022-0728(79)80265-X

    Article  Google Scholar 

  33. Garrone E, Bolis V, Fubini B, Morterra C (1989) Thermodynamic and spectroscopic characterization of heterogeneity among adsorption sites: CO on anatase at ambient temperature. Langmuir 5:892–899. https://doi.org/10.1021/la00088a002

    Article  CAS  Google Scholar 

  34. Singh N, Nguyen MT, Cantu DC, Mehdi BL, Browning ND, Fulton JL, Zheng J, Balasubramanian M, Gutiérrez OY, Glezakou VA, Rousseau R, Govind N, Camaioni DM, Campbell CT, Lercher JA (2018) Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. J Catal 368:8–19. https://doi.org/10.1016/j.jcat.2018.09.021

    Article  CAS  Google Scholar 

  35. Woods R, Bard AJ (1976) Electroanalytical chemistry: a series of advances. Marcel Dekker and Basel, New York

    Google Scholar 

  36. Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem Interfacial Electrochem 29:269–277. https://doi.org/10.1016/S0022-0728(71)80089-X

    Article  CAS  Google Scholar 

  37. Gómez R, Orts JM, Álvarez-Ruiz B, Feliu JM (2004) Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4. J Phys Chem B 108:228–238. https://doi.org/10.1021/jp034982g

    Article  CAS  Google Scholar 

  38. Zolfaghari A (1997) Energetics of the underpotential deposition of hydrogen on platinum electrodes. J Electrochem Soc 144:3034. https://doi.org/10.1149/1.1837955

    Article  CAS  Google Scholar 

  39. Cao DV, Sircar S (2001) Temperature dependence of the isosteric heat of adsorption. Adsorpt Sci Technol 19:887–894. https://doi.org/10.1260/0263617011494646

    Article  CAS  Google Scholar 

  40. WebBook NIST (2017) Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, p 20899

    Google Scholar 

  41. Kudchadker SA, Kudchadker AP, Wilhoit RC, Zwolinski BJ (1978) Ideal gas thermodynamic properties of phenol and cresols. J Phys Chem Ref Data 7:417–423. https://doi.org/10.1063/1.555573

    Article  CAS  Google Scholar 

  42. Campbell CT, Sprowl LH, Árnadóttir L (2016) Equilibrium constants and rate constants for adsorbates: two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J Phys Chem C 120:10283–10297. https://doi.org/10.1021/acs.jpcc.6b00975

    Article  CAS  Google Scholar 

  43. Carey SJ, Zhao W, Mao Z, Campbell CT (2019) Energetics of adsorbed phenol on Ni(111) and Pt(111) by calorimetry. J Phys Chem C 123:7627–7632. https://doi.org/10.1021/acs.jpcc.8b03155

    Article  CAS  Google Scholar 

  44. Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz MM, Werner J, Bluhm H (2016) Water at interfaces. Chem Rev 116:7698–7726. https://doi.org/10.1021/acs.chemrev.6b00045

    Article  CAS  PubMed  Google Scholar 

  45. Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M (2006) Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B 110:21833–21839. https://doi.org/10.1021/jp0631735

    Article  CAS  PubMed  Google Scholar 

  46. Job G, Herrmann F (2006) Chemical potential—a quantity in search of recognition. Eur J Phys 27:353–371. https://doi.org/10.1088/0143-0807/27/2/018

    Article  CAS  Google Scholar 

  47. Heiland W, Gileadi E, Bockris JOM (1966) Kinetic and thermodynamic aspects of the electrosorption of benzene on platinum electrodes. J Phys Chem 70:1207–1216. https://doi.org/10.1021/j100876a040

    Article  CAS  Google Scholar 

  48. Yuk SF, Lee MS, Akhade SA, Nguyen MT, Glezakou VA, Rousseau R (2020) First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals. Catal Today. https://doi.org/10.1016/j.cattod.2020.07.039

    Article  Google Scholar 

  49. Calle-Vallejo F, Koper MTM (2012) First-principles computational electrochemistry: achievements and challenges. Electrochim Acta 84:3–11. https://doi.org/10.1016/j.electacta.2012.04.062

    Article  CAS  Google Scholar 

  50. Sanyal U, Lopez-Ruiz J, Padmaperuma AB, Holladay J, Gutiérrez OY (2018) Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase. Org Process Res Dev 22:1590–1598. https://doi.org/10.1021/acs.oprd.8b00236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1919444. The authors thank Professor Charlie Campbell for helpful discussions.

Funding

This material is based upon work supported by the National Science Foundation under Grant No. 1919444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirala Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinola, J., Singh, N. Temperature dependence of aqueous-phase phenol adsorption on Pt and Rh. J Appl Electrochem 51, 37–50 (2021). https://doi.org/10.1007/s10800-020-01503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01503-3

Keywords

Navigation