Skip to main content

Advertisement

Log in

In situ growth of MoS2 on three-dimensional porous carbon for sensitive electrochemical determination of bisphenol A

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three-dimensional porous carbon network (3D-C) was used as the substrate for the in situ growth of molybdenum disulfide (MoS2) through a wet chemistry method. The obtained 3D-C@MoS2 nanocomposite exhibited a porous structure, high surface area and good electrical conductivity. By using the 3D-C@MoS2 nanocomposite as a novel electrode modifier, the electrochemical oxidation peak current of bisphenol A (BPA) was greatly enhanced with a lowered background current. The improved sensitivity benefits from adsorption of BPA onto MoS2 surface, the large surface area and good conductivity of the 3D-C@MoS2 nanohybrid. By using differential pulse voltammetry (DPV), we observed a good linearity with BPA levels in the range of 0.001–10 μM, with a detection limit estimated to be 0.5 nM (S/N = 3). The 3D-C@MoS2 modified electrode could be reused for several times in spite of the accumulation of BPA, and the fabrication reproducibility is excellent. The prepared 3D-C@MoS2 modified electrode showed higher selectivity to BPA than several other phenolic compounds due to their different electrochemical oxidation potentials and the enhanced accumulation property of BPA at the 3D-C@MoS2 surface. The BPA contents in plastic product and environmental water samples were determined with the proposed method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36(10):2149–2173. https://doi.org/10.1016/S0045-6535(97)10133-3

    Article  CAS  PubMed  Google Scholar 

  2. Biedermann-Brem S, Grob K (2009) Release of bisphenol A from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679–684. https://doi.org/10.1007/s00217-008-0978-8

    Article  CAS  Google Scholar 

  3. Carlsen E, Giwercman A, Keiding N, Skakkebæk NE (1995) Declining semen quality and increasing incidence of testicular cancer: is there a common cause? Environ Health Persp 103:137–139. https://doi.org/10.2307/3432523

    Article  Google Scholar 

  4. Qiao P, Wang X, Gao S, Yin X, Wang Y, Wang P (2020) Integration of black phosphorus and hollow-core anti-resonant fiber enables two-order magnitude enhancement of sensitivity for bisphenol A detection. Biosens Bioelectron 149:111821. https://doi.org/10.1016/j.bios.2019.111821

    Article  CAS  PubMed  Google Scholar 

  5. Owczarek K, Kubica P, Kudłak B, Rutkowska A, Konieczna A, Rachoń D, Namieśnik J, Wasik A (2018) Determination of trace levels of eleven bisphenol A analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci Total Environ 628–629:1362–1368. https://doi.org/10.1016/j.scitotenv.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  6. Azzouz A, Rascón AJ, Ballesteros E (2016) Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. J Pharmaceut Biomed 119:16–26. https://doi.org/10.1016/j.jpba.2015.11.024

    Article  CAS  Google Scholar 

  7. Cao W, Chao Y, Liu L, Liu Q, Pei M (2014) Flow injection chemiluminescence sensor based on magnetic oil-based surface molecularly imprinted nanoparticles for determination of bisphenol A. Sens Actuators B 204:704–709. https://doi.org/10.1016/j.snb.2014.08.032

    Article  CAS  Google Scholar 

  8. Cosio MS, Pellicanò A, Brunetti B, Fuenmayor CA (2017) A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sens Actuators B 246:673–679. https://doi.org/10.1016/j.snb.2017.02.104

    Article  CAS  Google Scholar 

  9. Shen R, Zhang W, Yuan Y, He G, Chen H (2015) Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode. J Appl Electrochem 45:343–352. https://doi.org/10.1007/s10800-015-0792-5

    Article  CAS  Google Scholar 

  10. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. https://doi.org/10.1021/nl400258t

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, Yao X, Yin J, Peng G, Cui P, Xu X (2015) MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. RSC Adv 5:7938–7943. https://doi.org/10.1039/c4ra14026e

    Article  CAS  Google Scholar 

  12. Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p−n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J 20:10632–10635. https://doi.org/10.1002/chem.201402522

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44:2681–2701. https://doi.org/10.1039/c4cs00300d

    Article  CAS  PubMed  Google Scholar 

  14. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85:10289–10295. https://doi.org/10.1021/ac402114c

    Article  CAS  PubMed  Google Scholar 

  15. Luo L, Shi M, Zhao S, Tan W, Lin X, Wang H, Jiang F (2019) Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A. J Saudi Chem Soc 23:762–773. https://doi.org/10.1016/j.jscs.2019.01.005

    Article  CAS  Google Scholar 

  16. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 89:56–71. https://doi.org/10.1016/j.bios.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  17. Chao J, Han X, Sun H, Su S, Weng L, Wang L (2016) Platinum nanoparticles supported MoS2 nanosheet for simultaneous detection of dopamine and uric acid. Sci China Chem 59:332–337. https://doi.org/10.1007/s11426-015-5492-9

    Article  CAS  Google Scholar 

  18. Ma G, Xu H, Xu F, Wang L (2017) Growth of worm-like and flower-like molybdenum disulfide on graphene nanosheets for sensitive determination of dopamine. Int J Electrochem Sci 12:7365–7376. https://doi.org/10.20964/2017.08.48

    Article  CAS  Google Scholar 

  19. Huang K-J, Liu Y-J, Wang H-B, Wang Y-Y, Liu Y-M (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202. https://doi.org/10.1016/j.bios.2013.11.061

    Article  CAS  PubMed  Google Scholar 

  20. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7:1850–1865. https://doi.org/10.1039/c4ee00050a

    Article  CAS  Google Scholar 

  21. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480. https://doi.org/10.1002/adma.201205332

    Article  CAS  PubMed  Google Scholar 

  22. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147. https://doi.org/10.1002/smll.201201161

    Article  CAS  PubMed  Google Scholar 

  23. Chang K, Chen W (2011) l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728. https://doi.org/10.1021/nn200659w

    Article  CAS  PubMed  Google Scholar 

  24. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 untrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:137881–217888. https://doi.org/10.1021/ja408329q

    Article  CAS  Google Scholar 

  25. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11:4168–4175. https://doi.org/10.1021/nl2020476

    Article  CAS  PubMed  Google Scholar 

  26. Liang D, Tian Z, Liu J, Ye Y, Wu S, Cai Y, Liang C (2015) MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors. Electrochim Acta 182:376–382. https://doi.org/10.1016/j.electacta.2015.09.085

    Article  CAS  Google Scholar 

  27. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78. https://doi.org/10.1016/j.jpowsour.2012.11.088

    Article  CAS  Google Scholar 

  28. Zhan T, Song Y, Li X, Hou W (2016) Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn–Al layered double hydroxide modified electrode. Mater Sci Eng C 64:354–361. https://doi.org/10.1016/j.msec.2016.03.093

    Article  CAS  Google Scholar 

  29. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  30. Huang K-J, Liu Y-J, Liu Y-M, Wang L-L (2014) Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J Hazard Mater 276:207–215. https://doi.org/10.1016/j.jhazmat.2014.05.037

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Shi Y, Zhang Y, Wang Y, Huang H, Zhang J, Song J (2017) Sensitive electrochemical detection of bisphenol A using molybdenum disulfide/Au nanorod composites modified glassy carbon electrode. Electroanalysis 29:2620–2627. https://doi.org/10.1002/elan.201700411

    Article  CAS  Google Scholar 

  32. Su B, Shao H, Li N, Chen X, Cai Z, Chen X (2017) A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 166:126–132. https://doi.org/10.1016/j.talanta.2017.01.049

    Article  CAS  PubMed  Google Scholar 

  33. Pogacean F, Biris AR, Socaci C, Coros M, Magerusan L, Rosu M-C, Lazar MD, Borodi G, Pruneanu S (2016) Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology 27:484001. https://doi.org/10.1088/0957-4484/27/48/484001

    Article  CAS  PubMed  Google Scholar 

  34. Messaoud NB, Ghica ME, Dridi C, Ali MB, Brett CMA (2017) Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens Actuators B 253:513–522. https://doi.org/10.1016/j.snb.2017.06.160

    Article  CAS  Google Scholar 

  35. Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369. https://doi.org/10.1016/j.talanta.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Niu X, Yang W, Wang G, Ren J, Guo H, Gao J (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 98:167–175. https://doi.org/10.1016/j.electacta.2013.03.064

    Article  CAS  Google Scholar 

  37. Zhou Y, Yang L, Li S, Dang Y (2017) A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens Actuators B 245:238–246. https://doi.org/10.1016/j.snb.2017.01.034

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52070080, 51478196, 21575043, 21605052).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YF, MG; Methodology: YF, FW, MG; Formal analysis and investigation: YF, FW, YL, YF; Writing—original draft preparation: YF; Writing—review and editing: MG, YC, YY; Funding acquisition: MG, YC, YY; Supervision: MG; Revision: LW.

Corresponding author

Correspondence to Manli Guo.

Ethics declarations

Conflict of interest

The authors of the manuscript have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Wang, F., Wang, L. et al. In situ growth of MoS2 on three-dimensional porous carbon for sensitive electrochemical determination of bisphenol A. J Appl Electrochem 51, 307–316 (2021). https://doi.org/10.1007/s10800-020-01499-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01499-w

Keywords

Navigation