Skip to main content

Advertisement

Log in

Ball mill assisted synthesis of cobalt–iron sulfide/N-doped carbon for high performance asymmetric supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt–iron sulfides supported on N-doped carbon were synthesized as energy storage material using ball milling followed by carbonization. As-synthesized materials were structurally analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. Furthermore, cobalt–iron sulfides supported on N-doped carbon were coated on Ni foam, and their electrochemical performance was tested in a 3-M KOH electrolyte. The as-fabricated Co–Fe–S-2 electrode registered a specific capacitance of 1252 F g−1 at 1 A g−1 and also showed capacitance retention of 66.4% at 20 A g−1. In addition, asymmetric supercapacitors (ASC) were fabricated using the as-synthesized electrode materials and it had a voltage window of 01.6 V. Among them, the activated carbon (AC)//Co–Fe–S-2 ASC device showed maximum specific capacitance of 169.3 F g−1 at 1 A g−1, and it registered maximum energy density of 59.6 Wh kg−1 at power density of 0.796 kW kg−1. The AC//Co–Fe–S-2 device delivered a rate capability of 55.6% at 30 A g−1, and it reveals a capacitance retention of 76.3% over 5000 cycles. Herein we also found that ball-milling-assisted synthesis of Co–Fe–S-2 electrode material is a promising candidate for high-performance ASCs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5(3):1400977. https://doi.org/10.1002/aenm.201400977

    Article  CAS  Google Scholar 

  2. Zhao Y, Liu S, Zhang B, Zhou J, Xie W, Li H (2018) One-step synthesis of mesoporous chlorine-doped carbonated cobalt hydroxide nanowires for high-performance supercapacitors electrode. Nanoscale Res Lett 13(1):415. https://doi.org/10.1186/s11671-018-2791-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen L, Yu L, Wu HB, Yu X-Y, Zhang X, Lou XW (2015) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6(1):6694. https://doi.org/10.1038/ncomms7694

    Article  CAS  PubMed  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  5. Karuppannan M, Kim Y, Sung Y-E, Kwon OJ (2018) Nitrogen-rich hollow carbon spheres decorated with FeCo/fluorine-rich carbon for high performance symmetric supercapacitors. J Mater Chem A 6(17):7522–7531. https://doi.org/10.1039/C8TA00028J

    Article  CAS  Google Scholar 

  6. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Gao Y, Wang C, Yang G (2015) A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv Energy Mater 5(6):1401767. https://doi.org/10.1002/aenm.201401767

    Article  CAS  Google Scholar 

  8. Fan L-Z, Hu Y-S, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17(16):3083–3087. https://doi.org/10.1002/adfm.200700518

    Article  CAS  Google Scholar 

  9. Karuppannan M, Kim Y, Sung Y-E, Kwon OJ (2019) Nitrogen and sulfur co-doped graphene-like carbon sheets derived from coir pith bio-waste for symmetric supercapacitor applications. J Appl Electrochem 49(1):57–66. https://doi.org/10.1007/s10800-018-1276-1

    Article  CAS  Google Scholar 

  10. Tao F, Zhao Y-Q, Zhang G-Q, Li H-L (2007) Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun 9(6):1282–1287. https://doi.org/10.1016/j.elecom.2006.11.022

    Article  CAS  Google Scholar 

  11. Wei W, Mi L, Gao Y, Zheng Z, Chen W, Guan X (2014) Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem Mater 26(11):3418–3426. https://doi.org/10.1021/cm5006482

    Article  CAS  Google Scholar 

  12. Javed MS, Dai S, Wang M, Guo D, Chen L, Wang X, Hu C, Xi Y (2015) High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources 285:63–69. https://doi.org/10.1016/j.jpowsour.2015.03.079

    Article  CAS  Google Scholar 

  13. Hsu Y-K, Chen Y-C, Lin Y-G (2014) Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim Acta 139:401–407. https://doi.org/10.1016/j.electacta.2014.06.138

    Article  CAS  Google Scholar 

  14. Yang J, Ma M, Sun C, Zhang Y, Huang W, Dong X (2015) Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J Mater Chem A 3(3):1258–1264. https://doi.org/10.1039/C4TA05747C

    Article  CAS  Google Scholar 

  15. Bao S-J, Li CM, Guo C-X, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180(1):676–681. https://doi.org/10.1016/j.jpowsour.2008.01.085

    Article  CAS  Google Scholar 

  16. Wan H, Ji X, Jiang J, Yu J, Miao L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402. https://doi.org/10.1016/j.jpowsour.2013.06.027

    Article  CAS  Google Scholar 

  17. Jiang Z, Lu W, Li Z, Ho KH, Li X, Jiao X, Chen D (2014) Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J Mater Chem A 2(23):8603–8606. https://doi.org/10.1039/C3TA14430E

    Article  CAS  Google Scholar 

  18. Han X, Tao K, Wang D, Han L (2018) Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 10(6):2735–2741. https://doi.org/10.1039/C7NR07931A

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Xu J, Zhang Y, Zheng Y, Hu X, Liu Z (2017) Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application. J Mater Sci 52(16):9531–9538. https://doi.org/10.1007/s10853-017-1119-1

    Article  CAS  Google Scholar 

  20. Zhang F, Cho M, Eom T, Kang C, Lee H (2019) Facile synthesis of manganese cobalt sulfide nanoparticles as high-performance supercapacitor electrode. Ceram Int 45(16):20972–20976. https://doi.org/10.1016/j.ceramint.2019.06.240

    Article  CAS  Google Scholar 

  21. Al Haj Y, Balamurugan J, Kim NH, Lee JH (2019) Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors. J Mater Chem A 7(8):3941–3952. https://doi.org/10.1039/C8TA12396A

    Article  CAS  Google Scholar 

  22. Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9(4):1299–1307. https://doi.org/10.1039/C5EE03633J

    Article  CAS  Google Scholar 

  23. Guo M, Balamurugan J, Li X, Kim NH, Lee JH (2017) Hierarchical 3D cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors. Small 13(33):1701275. https://doi.org/10.1002/smll.201701275

    Article  CAS  Google Scholar 

  24. Meng X, Sun H, Zhu J, Bi H, Han Q, Liu X, Wang X (2016) Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors. New J Chem 40(3):2843–2849. https://doi.org/10.1039/C5NJ03423J

    Article  CAS  Google Scholar 

  25. Tang S, Zhu B, Shi X, Wu J, Meng X (2017) General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors. Adv Energy Mater 7(6):1601985. https://doi.org/10.1002/aenm.201601985

    Article  CAS  Google Scholar 

  26. Qu C, Zhang L, Meng W, Liang Z, Zhu B, Dang D, Dai S, Zhao B, Tabassum H, Gao S, Zhang H, Guo W, Zhao R, Huang X, Liu M, Zou R (2018) MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A 6(9):4003–4012. https://doi.org/10.1039/C7TA11100B

    Article  CAS  Google Scholar 

  27. Li L, Ding Y, Huang H, Yu D, Zhang S, Chen H-Y, Ramakrishna S, Peng S (2019) Controlled synthesis of unique Co9S8 nanostructures with carbon coating as advanced electrode for solid-state asymmetric supercapacitors. J Colloid Interface Sci 540:389–397. https://doi.org/10.1016/j.jcis.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Huang C, He Y, Wu X, Ge R, Zu X, Li S, Qiao L (2020) High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron. J Power Sources 456:228023. https://doi.org/10.1016/j.jpowsour.2020.228023

    Article  CAS  Google Scholar 

  29. Du J, Yan Q, Li Y, Cheng K, Ye K, Zhu K, Yan J, Cao D, Zhang X, Wang G (2019) Hierarchical copper cobalt sulfides nanowire arrays for high-performance asymmetric supercapacitors. Appl Surf Sci 487:198–205. https://doi.org/10.1016/j.apsusc.2019.04.275

    Article  CAS  Google Scholar 

  30. Le K, Gao M, Liu W, Liu J, Wang Z, Wang F, Murugadoss V, Wu S, Ding T, Guo Z (2019) MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim Acta 323:134826. https://doi.org/10.1016/j.electacta.2019.134826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Post-Doctor Research Program (2017) through Incheon National University (INU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh Joong Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6673.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppannan, M., Kim, Y., Lee, D. et al. Ball mill assisted synthesis of cobalt–iron sulfide/N-doped carbon for high performance asymmetric supercapacitors. J Appl Electrochem 50, 1119–1128 (2020). https://doi.org/10.1007/s10800-020-01466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01466-5

Keywords

Navigation