Skip to main content
Log in

An electrochemical study of cobalt-salen (N,N′-bis(salicylidene)ethylenediaminocobalt(II) in the oxidation of syringyl alcohol in acetonitrile

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The reactivity of cobalt(II) complexes with molecular oxygen is a heavily studied and extremely important catalytic system. These interactions result in the formation of metal-dioxygen adducts that are responsible for numerous cobalt-catalyzed oxidations. In the case of 4-coordinate cobalt salen [Co(salen)] complexes, the formation of catalytically active, mononuclear, superoxo adducts in the presence of a secondary, N-donor ligand has been demonstrated [Co(salen)pyr-O2]. In batch reactions, these adducts are known to readily oxidize certain para-substituted phenolic compounds resulting in benzoquinones in high yield. Para-phenolic model compounds have been used to demonstrate the potential use of cobalt Schiff base complexes in the oxidation of lignin biomass. This work investigates the redox behavior of the Co(salen)pyr-O2 adduct as a potential recyclable electrocatalyst. Using traditional electrochemical techniques, the activity of the Co(salen)pyr-O2 adduct is evaluated as it applies to the oxidation of the substrate syringyl alcohol (4-(hydroxymethyl)-2,6-dimethoxy-phenol) in acetonitrile. Typical EC′ electrochemical behavior is reported showing a near linear relationship between substrate concentration and peak current density (Jp) up to 200 mV s−1. Electrochemical titration of catalytic amounts of Co(salen) with pyridine in the presence of excess oxygen and substrate indicate that the one-electron oxidation of Co(salen)pyr-O2H is reversible up to 2:1 pyridine to cobalt. However EPR characterization of electrolysis experiments with Co(salen)pyr-O2 in the presence of excess substrate show evidence for the deactivation of the catalyst system after two hours, indicating possible poor ligand stability or the occurrence of an inhibiting side reaction under reaction conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data and materials are freely available upon request via the email provided.

References

  1. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3:1227–1235. https://doi.org/10.1002/cssc.201000157

    Article  CAS  PubMed  Google Scholar 

  2. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  3. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  4. Küçük MM (2005) Delignification of biomass using alkaline glycerol. Energy Sources 27:1245–1255. https://doi.org/10.1080/009083190519375

    Article  CAS  Google Scholar 

  5. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  CAS  PubMed  Google Scholar 

  6. Muradov NZ, Veziroǧlu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33:6804–6839. https://doi.org/10.1016/j.ijhydene.2008.08.054

    Article  CAS  Google Scholar 

  7. Wilkerson CG, Mansfield SD, Lu F et al (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93. https://doi.org/10.1126/science.1250161

    Article  CAS  PubMed  Google Scholar 

  8. Zombeck A, Drago RS, Corden BB, Gaul JH (1981) Activation of molecular oxygen. Mechanistic studies of the oxidation of hindered phenols with cobalt-dioxygen complexes. J Am Chem Soc 103:7580–7585. https://doi.org/10.1021/ja00415a027

    Article  CAS  Google Scholar 

  9. Tejado A, Peña C, Labidi J et al (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663. https://doi.org/10.1016/j.biortech.2006.05.042

    Article  CAS  PubMed  Google Scholar 

  10. Han Y, Yuan L, Li G et al (2016) Renewable polymers from lignin via copper-free thermal click chemistry. Polymer 83:92–100. https://doi.org/10.1016/j.polymer.2015.12.010

    Article  CAS  Google Scholar 

  11. Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment. Biomass Bioenergy 33:793–802. https://doi.org/10.1016/j.biombioe.2008.12.001

    Article  Google Scholar 

  12. Luterbacher JS, Martin Alonso D, Dumesic JA (2014) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16:4816–4838. https://doi.org/10.1039/C4GC01160K

    Article  CAS  Google Scholar 

  13. Upton BM, Kasko AM (2016) Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chem Rev 116:2275–2306. https://doi.org/10.1021/acs.chemrev.5b00345

    Article  CAS  PubMed  Google Scholar 

  14. Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones. J Org Chem 60:2398–2404. https://doi.org/10.1021/jo00113a020

    Article  CAS  Google Scholar 

  15. Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. https://doi.org/10.1039/b307853c

    Article  CAS  PubMed  Google Scholar 

  16. Li CZ, Nishiyama K, Taniguchi I (2000) Electrochemical and spectroelectrochemical studies on cobalt myoglobin. Electrochim Acta 45:2883–2888. https://doi.org/10.1016/S0013-4686(00)00363-7

    Article  CAS  Google Scholar 

  17. Jones RD, Summerville DA, Basolo F (1979) Synthetic oxygen carriers related to biological systems. Chem Rev 79:139–179. https://doi.org/10.1021/cr60318a002

    Article  CAS  Google Scholar 

  18. Khandar AA, Shaabani B, Belaj F, Bakhtiari A (2006) Synthesis, characterization and spectroscopic and electrochemical studies of new axially coordinated cobalt(III) salen (salen = N,N′-bis(salicylidene)-1,2-ethylenediamine) complexes. The crystal structure of [CoIII(salen)(aniline)2]ClO4. Polyhedron 25:1893–1900. https://doi.org/10.1016/j.poly.2005.12.001

    Article  CAS  Google Scholar 

  19. Kapturkiewicz A, Behr B (1983) Voltammetric studies of Co(salen) and Ni(salen) in nonaqueous solvents at Pt electrode. Inorg Chim Acta 69:247–251. https://doi.org/10.1016/S0020-1693(00)83581-1

    Article  CAS  Google Scholar 

  20. Pavlishchuk VV, Addison AW (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorg Chim Acta 298:97–102. https://doi.org/10.1016/S0020-1693(99)00407-7

    Article  CAS  Google Scholar 

  21. Bond AM, Oldham KB, Snook GA (2000) Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistence organic solvents. Anal Chem 72:3492–3496. https://doi.org/10.1021/ac000020j

    Article  CAS  PubMed  Google Scholar 

  22. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  23. Xie Y, Anson FC (1995) Analysis of the cyclic voltammetric responses exhibited by electrodes modified with monolayers of catalysts in the absence and presence of substrates. J Electroanal Chem 384:145–153. https://doi.org/10.1016/0022-0728(94)03746-p

    Article  Google Scholar 

  24. Dalton EF, Surridge NA, Jernigan JC et al (1990) Charge transport in electroactive polymers consisting of fixed molecular redox sites. Chem Phys 141:143–157. https://doi.org/10.1016/0301-0104(90)80026-T

    Article  CAS  Google Scholar 

  25. Gowda JI, Nandibewoor ST (2015) Carbon paste sensor for the determination of an anticancer drug paclitaxel in pharmaceuticals and biological fluids. Anal Bioanal Electrochem 7:539–554

    CAS  Google Scholar 

  26. Zare HR, Chatraei F, Nasirizadeh N (2010) Differential pulse voltammetric determination of hydroxylamine at an indenedione derivative electrodeposited on a multi-wall carbon nanotube modified glassy carbon electrode. J Braz Chem Soc 21:1977–1985. https://doi.org/10.1590/S0103-50532010001000025

    Article  CAS  Google Scholar 

  27. Kervinen K, Korpi H, Leskelä M, Repo T (2003) Oxidation of veratryl alcohol by molecular oxygen in aqueous solution catalyzed by cobalt salen-type complexes: the effect of reaction conditions. J Mol Catal A Chem 203:9–19. https://doi.org/10.1016/S1381-1169(03)00156-0

    Article  CAS  Google Scholar 

  28. Díaz-González M, Vidal T, Tzanov T (2011) Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins. Appl Microbiol Biotechnol 89:1693–1700. https://doi.org/10.1007/s00253-010-3007-3

    Article  CAS  PubMed  Google Scholar 

  29. Caldwell ES, Steelink C (1969) Phenoxy radical intermediate in the enzymatic degradation of lignin model compounds. BBA - Gen Subj 184:420–431. https://doi.org/10.1016/0304-4165(69)90046-4

    Article  CAS  Google Scholar 

  30. Rajendran L, Sangaranarayanan MV (1999) Diffusion at ultramicro disk electrodes: chronoamperometric current for steady-state EC′ reaction using scattering analogue techniques. J Phys Chem B 103:1518–1524. https://doi.org/10.1021/jp983384c

    Article  CAS  Google Scholar 

  31. Rountree ES, McCarthy BD, Eisenhart TT, Dempsey JL (2014) Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg Chem 53:9983–10002. https://doi.org/10.1021/ic500658x

    Article  CAS  PubMed  Google Scholar 

  32. Savéant JM (2008) Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem Rev 108:2348–2378. https://doi.org/10.1021/cr068079z

    Article  CAS  PubMed  Google Scholar 

  33. Costentin C, Drouet S, Robert M, Savéant JM (2012) Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J Am Chem Soc 134:11235–11242. https://doi.org/10.1021/ja303560c

    Article  CAS  PubMed  Google Scholar 

  34. Savéant JM (2018) Molecular catalysis of electrochemical reactions. Cyclic voltammetry of systems approaching reversibility. ACS Catal 8:7608–7611. https://doi.org/10.1021/acscatal.8b02007

    Article  CAS  Google Scholar 

  35. Rieppo L, Saarakkala S, Närhi T et al (2012) Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr Cartil 20:451–459. https://doi.org/10.1016/j.joca.2012.01.010

    Article  CAS  Google Scholar 

  36. Hitchman MA (1977) Electronic structure of low-spin cobalt(II) Schiff base complexes. Inorg Chem 16:1985–1993. https://doi.org/10.1021/ic50174a032

    Article  CAS  Google Scholar 

  37. Ghosh P, Taube H, Hasegawa T, Kuroda R (1995) Vanadium(II) salts in pyridine and acetonitrile solvents. Inorg Chem 34:5761–5775. https://doi.org/10.1021/ic00127a013

    Article  CAS  Google Scholar 

  38. Rudie AW, Hart PW (2014) Catalysis: A potential alternative to kraft pulping. A synthesis of the literature. In: Proceedings of the PEERS Conference, 2014, pp 33–46

  39. Hall MB (1988) Bonding of dioxygen to transition metals. Oxygen complexes and oxygen activation by transition metals. Springer, New York, pp 3–16

    Chapter  Google Scholar 

  40. Smith TD, Pilbrow JR (1981) Recent developments in the stidies of molecular oxygen adducts of cobalt (II) compounds and related systems. Coord Chem Rev 39:295–383. https://doi.org/10.1016/S0010-8545(00)82006-8

    Article  CAS  Google Scholar 

  41. Huber A, Müller L, Elias H et al (2005) Cobalt(II) complexes with substituted salen-type ligands and their dioxygen affinity in N,N-dimethylformamide at various temperatures. Eur J Inorg Chem 2005:1459–1467. https://doi.org/10.1002/ejic.200400888

    Article  CAS  Google Scholar 

  42. Myers WK, Duesler EN, Tierney DL (2008) Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. Inorg Chem 47:6701–6710. https://doi.org/10.1021/ic800245k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zarembowitch J, Kahn O (1984) Magnetic properties of some spin-crossover, high-spin, and low-spin cobalt(II) complexes with Schiff bases derived from 3-formylsalicylic acid. Inorg Chem 23:589–593. https://doi.org/10.1021/ic00173a020

    Article  CAS  Google Scholar 

  44. Nishida Y, Kida S (1978) Ground states of the square planar low-spin cobalt(II) complexes. Bull Chem Soc Jpn 51:143–149. https://doi.org/10.1246/bcsj.51.143

    Article  CAS  Google Scholar 

  45. Nishida Y, Kida S (1979) Splitting of d-orbitals in square planar complexes of copper(II), nickel(II) and cobalt(II). Coord Chem Rev 27:275–298. https://doi.org/10.1016/S0010-8545(00)82069-X

    Article  CAS  Google Scholar 

  46. Meek DW, Drago RS, Piper TS (1962) Spectrochemical studies of dimethyl sulfoxide, tetramethylene sulfoxide, and pyridine N-oxide as ligands with nickel(II), chromium(III), and cobalt(II). Inorg Chem 1:285–289. https://doi.org/10.1021/ic50002a017

    Article  CAS  Google Scholar 

  47. Drago RS, Meek DW, Joesten MD, Laroche L (1963) Spectrochemical studies of a series of amides as ligands with nickel(II) and chromium(III). Inorg Chem 2:124–127. https://doi.org/10.1021/ic50005a032

    Article  CAS  Google Scholar 

  48. Cockle SA (1974) Electron paramagnetic resonance studies on cobalt(II) carbonic anhydrase. Low spin cyanide complexes. Biochem J 137:587–596. https://doi.org/10.1042/bj1370587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Böttcher A, Elias H, Jäger EG et al (1993) Comparative study on the coordination chemistry of cobalt(II), nickel(II), and copper(II) with derivatives of salen and tetrahydrosalen: metal-catalyzed oxidative dehydrogenation of the C-N bond in coordinated tetrahydrosalen. Inorg Chem 32:4131–4138. https://doi.org/10.1021/ic00071a028

    Article  Google Scholar 

  50. Cockle SA, Hill HAO, Williams RJP (1970) The formation of some superoxo-cobalt(III) complexes: an investigation by E.P.R. spectroscopy. Inorg Nucl Chem Lett 6:131–134. https://doi.org/10.1016/0020-1650(70)80326-9

    Article  CAS  Google Scholar 

  51. Bolzacchini E, Canevali C, Morazzoni F et al (1997) Spectromagnetic investigation of the active species in the oxidation of propenoidic phenols catalysed by [N, N′-bis(salicylidene)-ethane-1,2-diaminato]cobalt(II). J Chem Soc - Dalt Trans. https://doi.org/10.1039/a705188c

    Article  Google Scholar 

  52. Jain S, Zheng X, Jones CW, et al (2007) Importance of counterion reactivity on the deactivation of Co-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. Inorg Chem 46:8887–8896. https://doi.org/10.1021/ic700782f

    Article  CAS  PubMed  Google Scholar 

  53. Zuleta EC, Goenaga GA, Zawodzinski TA et al (2020) Deactivation of Co-Schiff base catalysts in the oxidation of: para-substituted lignin models for the production of benzoquinones. Catal Sci Technol 10:403–413. https://doi.org/10.1039/c9cy02040c

    Article  CAS  Google Scholar 

  54. VlČek AA, Hanzlík J (1967) Redox reactions of cobalt-cyanide complexes. II.1 reaction of pentacyanocobaltate(II) with p-benzoquinone. Properties of decacyano[(CN)5CoOC6H4OCo(CN)5]6. Inorg Chem 6:2053–2059. https://doi.org/10.1021/ic50057a027

    Article  Google Scholar 

  55. Kessel SL, Emberson RM, Debrunner PG, Hendrickson DN (1980) Iron(III), manganese(III), and cobalt(III) complexes with single chelating o-semiquinone ligands. Inorg Chem 19:1170–1178. https://doi.org/10.1021/ic50207a012

    Article  CAS  Google Scholar 

  56. Fiala J, Vlček AA (1980) The redox reactions of complex cobalt(II) cyanides. XI. The kinetics and mechanism of the redox addition reaction of pentacyanocobaltate(II) with 1,4-naphthoquinone in aqueous solution. Inorg Chim Acta 42:85–94. https://doi.org/10.1016/S0020-1693(00)88890-8

    Article  CAS  Google Scholar 

  57. Valko M, Klement R, Pelikán P et al (1995) Copper(II) and cobalt(II) complexes with derivatives of salen and tetrahydrosalen: an electron spin resonance, magnetic susceptibility, and quantum chemical study. J Phys Chem 99:137–143. https://doi.org/10.1021/j100001a024

    Article  CAS  Google Scholar 

  58. Fukuzumi S, Ohtsu H, Ohkubo K et al (2002) Formation of superoxide-metal ion complexes and the electron transfer catalysis. Coordination Chemistry Reviews 226:71–80. https://doi.org/10.1016/S0010-8545(01)00435-0

    Article  CAS  Google Scholar 

  59. Digurov NG, Zakharova VI, Kamneva AI (1966) Complex formation during the liquid phase catalytic oxidation of hydrocarbons. Pet Chem USSR 6:189–194. https://doi.org/10.1016/0031-6458(66)90043-8

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the National Science Foundation Tennessee EPSCoR program for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke T. Servedio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servedio, L.T., Lawton, J.S. & Zawodzinski, T.A. An electrochemical study of cobalt-salen (N,N′-bis(salicylidene)ethylenediaminocobalt(II) in the oxidation of syringyl alcohol in acetonitrile. J Appl Electrochem 51, 87–98 (2021). https://doi.org/10.1007/s10800-020-01459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01459-4

Keywords

Navigation