Skip to main content
Log in

SubPc-Br/NiMoO4 composite as a high-performance supercapacitor electrode materials

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the present paper, a facile hydrothermal synthesis was successfully used to obtain a novel SubPhthalocyanine/Nickel molybdate (SubPc-Br/NiMoO4) composite electrode material for a higher-performance super-capacitor. SEM and XRD investigations revealed that SubPc-Br particles were uniformly dispersed on the surface of NiMoO4 microspheres and kept the crystal formation of NiMoO4 during the combination of SubPc-Br and NiMoO4, giving the possibility to obtain high power density. The excellent pseudo-capacitance properties of SubPc-Br/NiMoO4 were also confirmed by a series of electrochemical experiments and showed that SubPc-Br significantly enhanced the redox strength and charge transfer characteristics of the NiMoO4. The as-prepared electrode had a high specific capacitance of 1292 F g−1 at a scan rate of 1 mV s−1. Additionally, in comparison with a separate NiMoO4, the cycle stability of the SubPc-Br/NiMoO4 super-capacitor is improved by 12.9% after 1000 cycles. The enhanced performances could be mainly attributed to the unique nanostructure and a larger contact area of SubPc-Br/NiMoO4. The materials obtained using this technique and the unique properties of cycle stability are attractive. This technique has an increased potential to enlarge the applicability of the electrochemical industry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical super-capacitors. Chem Soc Rev 41(2):797–828. https://doi.org/10.1039/c1cs15060j

    Article  PubMed  CAS  Google Scholar 

  2. Teeraphat W, Manickam MS, Sudip C, Dan L, Shafiullah GM, Robert DA, Rajeev A (2017) Effect of transition metal cations on stability enhancement for molybdate-based hybrid supercapacitor. ACS Appl Mater Interfaces 9(21):17977–17991. https://doi.org/10.1021/acsami.7b03836

    Article  CAS  Google Scholar 

  3. Gao S, Zhao JC, Zhao Y, Wu YD, Zhang XZ, Wang LL, Liu XJ, Rui YC, Xu JL (2015) Na2CoSiO4 as a novel positive electrode material for sodium-ion capacitors. Mater Lett 158:300–303. https://doi.org/10.1016/j.matlet.2015.06.038

    Article  CAS  Google Scholar 

  4. Wang HW, Zhang Y, Hui X, Zhang YQ, Tan HT, Zhang YF, Guo YY, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan QY (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26(18):3082–3093. https://doi.org/10.1002/adfm.201505240

    Article  CAS  Google Scholar 

  5. Liu Y, Peng XS (2017) Recent advances of super-capacitors based on two-dimensional materials. Appl Mater Today 8:104–115. https://doi.org/10.1016/j.apmt.2017.05.002

    Article  Google Scholar 

  6. Wang YC, Zhu BY, Ni JF, Zhang L, Wang HB, Gao LJ (2014) Pyrolyzed polyaniline-graphene nanosheets with enhanced lithium-storage properties: preparation and characterization. ChemElectroChem. https://doi.org/10.1002/celc.201300177

    Article  Google Scholar 

  7. Luo J, Ma Q, Gu HH, Zheng Y, Liu XY (2015) Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim Acta 173:184–192. https://doi.org/10.1016/j.electacta.2015.05.053

    Article  CAS  Google Scholar 

  8. Reddy IN, Reddy CV, Sreedhar A, Shim J, Cho MY, Yoo K, Kim D (2018) Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136. https://doi.org/10.1016/j.jelechem.2018.09.048

    Article  CAS  Google Scholar 

  9. Bonaccorso F, Colombo Lg YuGH, Stoller M, Tozzini V, Ferrari AC, Ruo RS (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246–1251. https://doi.org/10.1126/science.1246501

    Article  CAS  Google Scholar 

  10. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264(264):161–167. https://doi.org/10.1016/j.jpowsour.2014.04.103

    Article  CAS  Google Scholar 

  11. Yang ZH, Xu FF, Zhang WX, Mei ZS, Pei B, Zhu X (2014) Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J Power Sources 246(3):24–31. https://doi.org/10.1016/j.jpowsour.2013.07.057

    Article  CAS  Google Scholar 

  12. Li F, Xing Y, Huang M, Li KL, Yu TT, Zhang YX, Losic D (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance super-capacitors. Mater Chem A 3(15):7855–7861. https://doi.org/10.1039/C5TA00634A

    Article  CAS  Google Scholar 

  13. Feng C, Zhang JF, He Y, Zhong C, Hu WB, Liu L, Deng YD (2015) Sub-3 nm Co3O4 nanofilms with enhanced super-capacitor properties. ACS Nano 9(2):1730–1739. https://doi.org/10.1021/nn506548d

    Article  PubMed  CAS  Google Scholar 

  14. Chen WC, Xiao MJ, Han LL, Zhang JD, Jiang HX, Gu CT, Shen WF, Yang RQ (2016) Unsubstituted benzodithiophene-based conjugated polymers for high-performance organic field-effect transistors and organic solar cells. ACS Appl Mater Interfaces 8(30):19665–19671. https://doi.org/10.1021/acsami.6b06070

    Article  PubMed  CAS  Google Scholar 

  15. Kim JH, Song CE, Shin N, Kang H, Wood S, Kang IN, Kim BJ, Kim B, Kim JS, Shin WS, Hwang DH (2013) High-crystalline medium-band-gap polymers consisting of benzodithiophene and benzotriazole derivatives for organic photovoltaic cells. ACS Appl Mater Interfaces 24(5):12820–12831. https://doi.org/10.1021/am401926h

    Article  CAS  Google Scholar 

  16. Das PK, Arunachalam M, Seo YJ, Ahn KS, Ha JS, Kang H (2019) Electrolyte effects on undoped and Mo-doped BiVO4 film for photoelectrochemical water splitting. J Electroanal Chem 842:41–49. https://doi.org/10.1016/j.jelechem.2019.04.030

    Article  CAS  Google Scholar 

  17. Wang XF, Jiang K, Shen GZ (2015) Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater Today 18:265. https://doi.org/10.1016/j.mattod.2015.01.002

    Article  CAS  Google Scholar 

  18. Wang K, Wu HP, Meng YN, Zhang YJ, Wei ZX (2012) Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ Sci 5:8384. https://doi.org/10.1039/c2ee21643d

    Article  CAS  Google Scholar 

  19. Pan SW, Ren J, Fang X, Peng HS (2015) Integration: an effective strategy to develop multifunctional energy storage devices. Adv Energy Mater. https://doi.org/10.1002/aenm.201501867

    Article  Google Scholar 

  20. Zhang CJ, Higgins TM, Park SH, O’Brien SE, Long DH, Coleman JN, Nicolosi V (2016) Highly flexible and transparent solid-state super-capacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28:495. https://doi.org/10.1016/j.nanoen.2016.08.052

    Article  CAS  Google Scholar 

  21. Claessens CG, González-Rodríguez D, Rodríguez-Morgade MS, Medina A, Torres T (2014) Subphthalocyanines, subporphyrazines, and subporphyrins: singularnonplanar aromaticsystems. Chem Rev 114(4):2192–2277. https://doi.org/10.1002/chin.201416261

    Article  PubMed  CAS  Google Scholar 

  22. Inagi S (2016) Fabrication of gradient polymer surfaces using bipolar electrochemistry. Polym J 48:39–44. https://doi.org/10.1038/pj.2015.73

    Article  CAS  Google Scholar 

  23. Tisserant G, Fattah Z, Ayela C, Roche J, Plano B, Zigah D, Goudeau B, Kuhn A, Bouffier L (2015) Generation of metal composition gradients by means of bipolar electrodeposition. Electrochim Acta 179:276–281. https://doi.org/10.1016/j.electacta.2015.03.102

    Article  CAS  Google Scholar 

  24. Loget G, Roche J, Kuhn A (2012) True bulk synthesis of janus objects by bipolar electrochemistry. Adv Mater 24:5111–5116. https://doi.org/10.1002/adma.201201623

    Article  PubMed  CAS  Google Scholar 

  25. Liebold M, Sharikow E, Seikel E, Trombach L, Harms K, Zimcik P, Novakova V, Tonner R, Sundermeyer J (2018) An experimental and computational study on isomerically pure, soluble azaphthalocyanines and their complexes and boronaza subphthalocyanines of a varying number of aza units. Org Biomol Chem 16:6586–6599. https://doi.org/10.1039/C8OB01705K

    Article  PubMed  CAS  Google Scholar 

  26. Zhang JD, Hao N, Lu L, Yun S, Zhu XF, Hong K, Feng LD (2019) High-efficient preparation and screening of electrocatalysts using a closed bipolar electrode array system. J Electroanal Chem 832:1–6. https://doi.org/10.1016/j.jelechem.2018.10.025

    Article  CAS  Google Scholar 

  27. Zhou YJ, Mao ZM, Wang W, Yang ZK, Liu X (2016) In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (NiMOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacior materials. ACS Appl Mater Interfaces 8(42):28904–28916. https://doi.org/10.1021/acsami.6b10640

    Article  PubMed  CAS  Google Scholar 

  28. Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for super-capacitors. J Mater Chem. https://doi.org/10.1039/c2ta00163b

    Article  Google Scholar 

  29. Zhang J, Tu JP, Xia XH, Wang XL, Gu CD (2011) Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J Mater Chem. https://doi.org/10.1039/c0jm04361c

    Article  PubMed  PubMed Central  Google Scholar 

  30. LuoW Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji XL (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A. https://doi.org/10.1039/c3ta12389h

    Article  Google Scholar 

  31. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. https://doi.org/10.1016/j.elecom.2012.10.038

    Article  CAS  Google Scholar 

  32. Zhong J, Fan LQ, Wu X, Wu JH, Liu GJ, Lin JM, Huang ML, Wei YL (2015) Improved energy density of quasi-solid-state super-capacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim Acta 166:150–156. https://doi.org/10.1016/j.electacta.2015.03.114

    Article  CAS  Google Scholar 

  33. Yu ZN, Li C, Abbitt D, Thomas J (2014) Flexible, sandwich-like Ag-nanowire/PEDOT:PSS-nanopillar/MnO2 high performance super-capacitors. J Mater Chem A. https://doi.org/10.1039/C4TA01245C

    Article  Google Scholar 

  34. Shang YX, Shi J, Liu H, Liu XF, Wang ZG, Ding BQ (2018) A bumpy gold nanostructure exhibiting DNA-engineered stimuli-responsive SERS signals. Nanoscale 10:9455–9459. https://doi.org/10.1103/physreve.57.r6281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (21606180), the Natural Science Foundation of Shaanxi Provincial Education Department (16JK1786), and the Industrialization Project of Shaanxi Provincial Education Department (16JF027).

Author information

Authors and Affiliations

Authors

Contributions

All author contributions are the same.

Corresponding author

Correspondence to Zhuo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BB., Hao, H., Zhang, FY. et al. SubPc-Br/NiMoO4 composite as a high-performance supercapacitor electrode materials. J Appl Electrochem 50, 1007–1018 (2020). https://doi.org/10.1007/s10800-020-01455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01455-8

Keywords

Navigation