Skip to main content
Log in

The behavior of cuprous species at electrodes polarized in hydrochloric acid solutions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of cuprous species at electrodes polarized in hydrochloric acid solutions has been investigated in order to obtain the fundamental knowledge of electrodeposition of copper from chloride media. The rest potentials of the cuprous/copper couple in hydrochloric acid solutions were determined by the activity of the Cu+ aquo cuprous ions. It was found that the rest potential could be controlled by the concentration of chloride ions according to their correlation with the aquo species. Dissolution of metallic copper primarily yielded Cu(I) species in hydrochloric acid solutions, in contrast to the Cu(II) species in sulfuric acid solutions. However, cuprous chloride precipitation may also appear in 1–2 mol dm−3 hydrochloric acid solutions and even cuprous oxide may be formed at the surface of the copper electrode at higher HCl concentrations. The experimental results suggested the possibility to produce a relatively dense and smooth deposited surface, while reducing the power consumption of copper electrowinning.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nanjo M (1988) Urban mine, new resources for the year 2000 and beyond. Bull Res Inst Miner Dress Metall 43:239–251

    Google Scholar 

  2. Hosoi A, Hiruta K, Takasaki Y, Shibayama A (2012) Metal recovery from printed circuit board waste by chlorination-volatilization and the volatilization behavior of metals. J Jpn I Met 76:155–163. https://doi.org/10.2320/jinstmet.76.155

    Article  CAS  Google Scholar 

  3. Oleszek S, Grabda M, Shibata E, Nakamura T (2013) Distribution of copper, silver and gold during thermal treatment with brominated flame retardants. Waste Manage 33:1835–1842. https://doi.org/10.1016/j.wasman.2013.05.009

    Article  CAS  Google Scholar 

  4. Kékesi T (2013) Electrorefining in aqueous chloride media for recovering tin from waste materials. Acta Metall Slovaca 19:196–205. https://doi.org/10.12776/ams.v19i3.161

    Article  Google Scholar 

  5. Kékesi T, Isshiki M (1997) Ultra high purification of copper chloride solutions by anion exchange. Hydrometallurgy 45:345–361. https://doi.org/10.1016/s0304-386x(96)00091-6

    Article  Google Scholar 

  6. Kékesi T, Uchikoshi M, Mimura K, Isshiki M (2001) Anion-exchange separation in hydrochloric acid solutions for the ultrahigh purification of cobalt. Metall Mater Trans B 32B:573–582. https://doi.org/10.1007/s11663-001-0113-8

    Article  Google Scholar 

  7. Kékesi T, Mimura K, Isshiki M (2002) Ultra-high purification of iron by anion exchange in hydrochloric acid solutions. Hydrometallurgy 63:1–13. https://doi.org/10.1016/s0304-386x(01)00208-0

    Article  Google Scholar 

  8. Uchikoshi M, Shibuya H, Imaizumi J, Kékesi T, Mimura K, Isshiki M (2010) Preparation of high-purity cobalt by anion-exchange separation and plasma arc melting. Metall Mater Trans B 41B:448–455. https://doi.org/10.1007/s11663-009-9331-2

    Article  CAS  Google Scholar 

  9. Isshiki M, Mimura K, Uchikoshi M (2011) Preparation of high purity metals for advanced devices. Thin Solid Films 519:8451–8455. https://doi.org/10.1016/j.tsf.2011.05.038

    Article  CAS  Google Scholar 

  10. Kekesi T, Isshiki M (1997) Electrodeposition of copper from pure cupric chloride hydrochloric acid solutions. J Appl Electrochem 27:982–990. https://doi.org/10.1023/a:1018418105908

    Article  CAS  Google Scholar 

  11. Jin W, Su J, Zheng S, Lei H (2017) Controlled electrodeposition of uniform copper powder from hydrochloric acid solutions. J Electrochem Soc 164:D723–D728. https://doi.org/10.1149/2.1491712jes

    Article  CAS  Google Scholar 

  12. Sillén LG, Martell AE (eds) (1964) Stability constants of metal-ion complexes. Chemical Society, London

    Google Scholar 

  13. Koyama K, Tanaka M, Miyasaka Y, Lee J (2006) Electrolytic copper deposition from ammoniacal alkaline solution containing Cu(I). Mater Trans 47:2076–2080. https://doi.org/10.2320/matertrans.47.2076

    Article  CAS  Google Scholar 

  14. Murase K, Tamagawa K, Mizota N, Motoba K, Abe Y, Awakura Y (2005) Electrodeposition behavior of dendritic copper from aqueous copper(I) chloride solution containing condensed sodium halides. Shigen to Sozai 121:103–110. https://doi.org/10.2473/shigentosozai.121.103

    Article  CAS  Google Scholar 

  15. Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee J (2013) Effect of additives on monovalent copper electrodeposition in ammoniacal alkaline solutions. Hydrometallurgy 133:58–63. https://doi.org/10.1016/j.hydromet.2012.11.015

    Article  CAS  Google Scholar 

  16. Park DJ, Park CM, Kang NH, Lee KH (2016) Effect of electrolyte type on shape and surface area characteristics of dendritic Cu powder. J Korean Inst Surf Eng 49:416–422. https://doi.org/10.5695/jkise.2016.49.5.416

    Article  Google Scholar 

  17. Cooper RS (1956) Anodic transients of copper in hydrochloric acid. J Electrochem Soc 103:307–315. https://doi.org/10.1149/1.2430319

    Article  CAS  Google Scholar 

  18. Cooper RS, Bartlett JH (1958) Convection and film instability copper anodes in hydrochloric acid. J Electrochem Soc 105:109–116. https://doi.org/10.1149/1.2428773

    Article  CAS  Google Scholar 

  19. Hurlen T, Nilsson E, Nilsson R, Olsen G, Pedersen C, Toft J (1961) Electrochemical behavior of copper in acid chloride solution. Acta Chem Scand 15:1231–1238. https://doi.org/10.3891/acta.chem.scand.15-1231

    Article  CAS  Google Scholar 

  20. Bonfiglio CH, Albaya HC, Cobo OA (1973) The kinetics of the anodic dissolution of copper in acid chloride solutions. Corros Sci 13:717–724. https://doi.org/10.1016/s0010-938x(73)80010-1

    Article  CAS  Google Scholar 

  21. Turner M, Brook P (1973) The anodic behaviour of copper in static and flowing hydrochloric acid solutions. Corros Sci 13:973–983. https://doi.org/10.1016/s0010-938x(73)80080-0

    Article  CAS  Google Scholar 

  22. Braun M, Nobe K (1979) Electrodissolution kinetics of copper in acidic chloride solutions. J Electrochem Soc 126:1666–1671. https://doi.org/10.1149/1.2128773

    Article  CAS  Google Scholar 

  23. Lee HP, Nobe K (1986) Kinetics and mechanisms of Cu electrodissolution in chloride media. J Electrochem Society 133:2035–2043. https://doi.org/10.1149/1.2108335

    Article  CAS  Google Scholar 

  24. Crundwell FK (1992) The anodic dissolution of copper in hydrochloric acid solutions. Electrochimi Acta 37:2707–2714. https://doi.org/10.1016/0013-4686(92)85197-s

    Article  CAS  Google Scholar 

  25. Ding L, Song Z, Wu P, Cheng J, Chen C, Niu Y, Li B (2019) Electrochemical oscillations during copper electrodissolution in hydrochloric acid solution. Int J Electrochem Sci 14:585–597. https://doi.org/10.20964/2019.01.63

    Article  CAS  Google Scholar 

  26. Barnartt S (1961) Magnitude of IR-drop corrections in electrode polarization measurements made with a luggin-haber capillary. J Electrochem Soc 108:102–104. https://doi.org/10.1149/1.2427994

    Article  CAS  Google Scholar 

  27. Fritz JJ (1982) Solubility of cuprous chloride in various soluble aqueous chlorides. J Chem Eng Data 27:188–193. https://doi.org/10.1021/je00028a027

    Article  CAS  Google Scholar 

  28. Foote HW (1923) Equilibrium in the systems, nickel chloride, cobalt chloride, cupric chloride-Hydrochloric acid-water. J Am Chem Soc 45:663–667. https://doi.org/10.1021/ja01656a014

    Article  CAS  Google Scholar 

  29. Juan DD, Messenguer VF, Lozano LJ (1999) Una contribución al estudio de la solubilidad del CuSO4∙5H2O en medio acuoso. Rev Metal 35:47–52. https://doi.org/10.3989/revmetalm.1999.v35.i1.605

    Article  Google Scholar 

  30. Ueno K (1972) Chelate titration. Nan-e dou, Tokyo

    Google Scholar 

  31. Sawyer DT, Sobkowiak A, Roberts JL (1995) Electrochemistry for chemists. Wiley-Interscience, New York

    Google Scholar 

  32. Filipponi A, D'Angelo P, Pavel NV, Cicco AD (1994) Triplet correlations in the hydration shell of aquaions. Chem Phys Lett 225:150–155. https://doi.org/10.1016/0009-2614(94)00622-9

    Article  CAS  Google Scholar 

  33. Liu W, Brugger J, McPhail DC, Spiccia L (2002) A spectrophotometric study of aqueous copper(I)-chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim Cosmochim Acta 66:3615–3633. https://doi.org/10.1016/s0016-7037(02)00942-0

    Article  CAS  Google Scholar 

  34. Uchikoshi M, Shinoda K (2019) Determination of structures of cupric-chloro complexes in hydrochloric acid solutions by UV-Vis and X-ray absorption spectroscopy. Struct Chem 30:61–74. https://doi.org/10.1007/s11224-018-1164-7

    Article  CAS  Google Scholar 

  35. Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274:1089–1198. https://doi.org/10.2475/ajs.274.10.1089

    Article  CAS  Google Scholar 

  36. Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Hückel parameters for activity coefficients and relative partial molal properties. Am J Sci 274:1199–1261. https://doi.org/10.2475/ajs.274.10.1199

    Article  CAS  Google Scholar 

  37. Uchikoshi M (2018) Determination of the distribution of cobalt-chloro complexes in hydrochloric acid solutions at 298 K. J Solution Chem 47:2021–2038. https://doi.org/10.1007/s10953-018-0831-z

    Article  CAS  Google Scholar 

  38. Uchikoshi M (2019) Determination of the distribution of ferric chloro complexes in hydrochloric acid solutions at 298 K. B Chem Soc Jpn 92:1928–1934. https://doi.org/10.1246/bcsj.20190195

    Article  CAS  Google Scholar 

  39. Lee HP, Nobe K, Pearlstein AJ (1985) Film formation and current oscillations in the electrodissolution of Cu in acidic chloride media. J Electrochem Soc 132:1031–1037. https://doi.org/10.1149/1.2114010

    Article  CAS  Google Scholar 

  40. Partanen JI, Juusola PM, Vahteristo KP, Mendonca AJG (2007) Re-evaluation of the activity coefficients of aqueous hydrochloric acid solutions up to a molality of 16.0 mol kg−1 using the hückel and pitzer equations at temperatures from 0 to 50 °C. J Solution Chem 36:39–59. https://doi.org/10.1007/s10953-006-9099-9

    Article  CAS  Google Scholar 

  41. Pearlstein AJ, Lee HP, Nobe K (1985) Film formation and current oscillations in the electrodissolution of copper in acidic chloride media. J Electrochem Soc 132:2159–2165. https://doi.org/10.1149/1.2114309

    Article  CAS  Google Scholar 

  42. Kulcsar T, Toth G, Kékesi T (2016) Complex evaluation and development of electrolytic tin refining in acidic chloride media for processing tin-based scrap from lead-free soldering. Miner Proc Extr Met 125:228–237. https://doi.org/10.1080/03719553.2016.1206693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Uchikoshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchikoshi, M., Kékesi, T. The behavior of cuprous species at electrodes polarized in hydrochloric acid solutions. J Appl Electrochem 50, 597–608 (2020). https://doi.org/10.1007/s10800-020-01420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01420-5

Keywords

Navigation