Electrochemical reduction selectivity of crotonaldehyde on copper


Lignocellulosic waste is a potential feedstock for the generation of fuels and commodity chemicals, but existing conversion methods are too cost-intensive to be viable long-term solutions. Electrochemical reductions are promising for decentralized biomass valorization due to their modular scaling and capacity to run intermittently and without high temperatures or pressures. Using crotonaldehyde as a multi-functional model compound for the many partially unsaturated oxygenates found in processed biomass, we here demonstrate the production of butanal, butanol, butene, and butane (variously useful as commodity chemicals and major components of liquified petroleum gas) under ambient conditions by reductive bulk electrolysis with a copper mesh working electrode. We identify an optimum potential for reduced organic production under the reaction conditions and compare product distributions from reductions of intermediate species to further propose branching reaction pathways. Though butanal is typically the most abundant product from crotonaldehyde reduction, most of the butene and butane appear to result from a pathway involving initial reduction of the aldehyde group. We discuss evidence that selectivity is driven by interplay between crotonaldehyde reduction, local pH shifts due to the hydrogen evolution reaction, and changes in site reactivity and availability due to electrode fouling. This demonstration of model electrochemical biomass valorization also serves to inform further exploration into reduction of multi-functional molecules and electrochemical biomass processing in general.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Dupuis DP, Grim RG, Nelson E, Tan ECD, Ruddy DA, Hernandez S, Westover T, Hensley JE, Carpenter D (2019) High-octane gasoline from biomass: experimental, economic, and environmental assessment. Appl Energy 241:25–33. https://doi.org/10.1016/j.apenergy.2019.02.064

    CAS  Article  Google Scholar 

  2. 2.

    Grim RG, To AT, Farberow CA, Hensley JE, Ruddy DA, Schaidle JA (2019) Growing the bioeconomy through catalysis: a review of recent advancements in the production of fuels and chemicals from syngas-derived oxygenates. ACS Catal 9:4145–4172. https://doi.org/10.1021/acscatal.8b03945

    CAS  Article  Google Scholar 

  3. 3.

    Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742. https://doi.org/10.1021/cr4002758

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Luca OR, Fenwick AQ (2015) Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2—The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates. J Photochem Photobiol B 152:26–42. https://doi.org/10.1016/j.jphotobiol.2015.04.015

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Sun Z, Ma T, Tao H, Fan Q, Han B (2017) Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3:560–587. https://doi.org/10.1016/j.chempr.2017.09.009

    CAS  Article  Google Scholar 

  6. 6.

    Lam CH, Das S, Erickson NC, Hyzer CD, Garedew M, Anderson JE, Wallington TJ, Tamor MA, Jackson JE, Saffron CM (2017) Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain Energy Fuels 1:258–266. https://doi.org/10.1039/C6SE00080K

    CAS  Article  Google Scholar 

  7. 7.

    Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183. https://doi.org/10.1002/anie.200604274

    CAS  Article  Google Scholar 

  8. 8.

    Resasco DE, Crossley SP (2015) Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel. Catal Today 257:185–199. doi:https://doi.org/10.1016/j.cattod.2014.06.037

    CAS  Article  Google Scholar 

  9. 9.

    Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    CAS  Article  Google Scholar 

  10. 10.

    Mukarakate C, Evans RJ, Deutch S, Evans T, Starace AK, ten Dam J, Watson MJ, Magrini K (2017) Reforming biomass derived pyrolysis bio-oil aqueous phase to fuels. Energy Fuels 31:1600–1607. https://doi.org/10.1021/acs.energyfuels.6b02463

    CAS  Article  Google Scholar 

  11. 11.

    Wilson AN, Dutta A, Black BA, Mukarakate C, Magrini K, Schaidle JA, Michener WE, Beckham GT, Nimlos MR (2019) Valorization of aqueous waste streams from thermochemical biorefineries. Green Chem 21:4217–4230. https://doi.org/10.1039/C9GC00902G

    CAS  Article  Google Scholar 

  12. 12.

    Brown TR, Zhang Y, Hu G, Brown RC (2012) Techno-economic analysis of biobased chemicals production via integrated catalytic processing. Biofuels Bioprod Bioref 6:73–87. https://doi.org/10.1002/bbb.344

    CAS  Article  Google Scholar 

  13. 13.

    Li K, Sun Y (2018) Electrocatalytic upgrading of biomass-derived intermediate compounds to value‐added products. Chem Eur J 24:18258–18270. https://doi.org/10.1002/chem.201803319

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Palkovits S, Palkovits R (2019) The role of electrochemistry in future dynamic bio-refineries: a focus on (non‐)Kolbe electrolysis. Chem Ing Tech 91:699–706. https://doi.org/10.1002/cite.201800205

    CAS  Article  Google Scholar 

  15. 15.

    Yan M, Kawamata Y, Baran PS (2017) Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev 117:13230–13319. https://doi.org/10.1021/acs.chemrev.7b00397

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dalavoy TS, Jackson JE, Swain GM, Miller DJ, Li J, Lipkowski J (2007) Mild electrocatalytic hydrogenation of lactic acid to lactaldehyde and propylene glycol. J Catal 246:15–28. https://doi.org/10.1016/j.jcat.2006.11.009

    CAS  Article  Google Scholar 

  17. 17.

    Lam CH, Lowe CB, Li Z, Longe KN, Rayburn JT, Caldwell MA, Houdek CE, Maguire JB, Saffron CM, Miller DJ, Jackson JE (2015) Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chem 17:601–609. https://doi.org/10.1039/C4GC01632G

    CAS  Article  Google Scholar 

  18. 18.

    Román AM, Hasse JC, Medlin JW, Holewinski A (2019) Elucidating acidic electro-oxidation pathways of furfural on platinum. ACS Catal 9:10305–10316. https://doi.org/10.1021/acscatal.9b02656

    CAS  Article  Google Scholar 

  19. 19.

    Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM, Tessonnier J-P, Li W (2017) Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J Am Chem Soc 139:14120–14128. https://doi.org/10.1021/jacs.7b06331

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bondue CJ, Koper MTM (2019) A mechanistic investigation on the electrocatalytic reduction of aliphatic ketones at platinum. J Catal 369:302–311. https://doi.org/10.1016/j.jcat.2018.11.019

    CAS  Article  Google Scholar 

  21. 21.

    dos Santos TR, Nilges P, Sauter W, Harnisch F, Schröder U (2015) Electrochemistry for the generation of renewable chemicals: electrochemical conversion of levulinic acid. RSC Adv 5:26634–26643. https://doi.org/10.1039/C4RA16303F

    CAS  Article  Google Scholar 

  22. 22.

    Urban C, Xu J, Straüber H, dos Santos Dantas TR, Mühlenberg J, Härtig C, Angenent LT, Harnisch F (2017) Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy Environ Sci 10:2231–2244. https://doi.org/10.1039/c7ee01303e

    CAS  Article  Google Scholar 

  23. 23.

    Cha HG, Choi K-S (2015) Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem 7:328–333. https://doi.org/10.1038/nchem.2194

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Verma S, Lu S, Kenis PJA (2019) Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat Energy 4:466–474. https://doi.org/10.1038/s41560-019-0374-6

    CAS  Article  Google Scholar 

  25. 25.

    Mullen CA, Strahan GD, Boateng AA (2009) Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy Fuels 23:2707–2718. https://doi.org/10.1021/ef801048b

    CAS  Article  Google Scholar 

  26. 26.

    Starace AK, Black BA, Lee DD, Palmiotti EC, Orton KA, Michener WE, ten Dam J, Watson MJ, Beckham GT, Magrini KA, Mukarakate C (2017) Characterization and catalytic upgrading of aqueous stream carbon from catalytic fast pyrolysis of biomass. ACS Sustain Chem Eng 5:11761–11769. https://doi.org/10.1021/acssuschemeng.7b03344

    CAS  Article  Google Scholar 

  27. 27.

    Claus P (1998) Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top Catal 5:51–62. https://doi.org/10.1023/A:1019177330810

    CAS  Article  Google Scholar 

  28. 28.

    Kliewer CJ, Bieri M, Somorjai GA (2009) Hydrogenation of the α,β-unsaturated aldehydes acrolein, crotonaldehyde, and prenal over Pt single crystals: a kinetic and sum-frequency generation vibrational spectroscopy study. J Am Chem Soc 131:9958–9966. https://doi.org/10.1021/ja8092532

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25:28–37. https://doi.org/10.1016/j.mineng.2011.09.019

    CAS  Article  Google Scholar 

  30. 30.

    Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6:4073–4082. https://doi.org/10.1021/acs.jpclett.5b01559

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672. https://doi.org/10.1021/acs.chemrev.8b00705

    CAS  Article  Google Scholar 

  32. 32.

    Johnston JC, Faulkner JD, Mandell L, Day RA (1976) Electrochemical reduction of geranial, farnesal, and crotonaldehyde. J Org Chem 41:2611–2614. https://doi.org/10.1021/jo00877a021

    CAS  Article  Google Scholar 

  33. 33.

    González-Arjona D, Rueda M, Ruiz JJ (1988) Electrodimerization of crotonic aldehyde in aqueous media on a mercury electrode. J Electroanal Chem Interfacial Electrochem 239:239–251. https://doi.org/10.1016/0022-0728(88)80283-3

    Article  Google Scholar 

  34. 34.

    Law HD (1912) CVI: Electrolytic reduction. Part VI. Unsaturated aldehydes and ketones. J Chem Soc Trans 101:1016–1032. https://doi.org/10.1039/CT9120101016

    CAS  Article  Google Scholar 

  35. 35.

    Horányi G, Torkos K (1982) Electrocatalytic reduction of simple α,β unsaturated aliphatic carbonyl compounds on a platinized platinum electrode in acid media. Formation of hydrocarbons from acrolein and crotonaldehyde. J Electroanal Chem Interfacial Electrochem 136:301–309. https://doi.org/10.1016/0022-0728(82)85051-1

    Article  Google Scholar 

  36. 36.

    Nielsen AT (1957) The base-catalyzed self-condensation of 2-ethyl-2-hexenal. I. Formation of a cyclic aldol, C16H28O2. J Am Chem Soc 79:2518–2524. https://doi.org/10.1021/ja01567a044

    CAS  Article  Google Scholar 

  37. 37.

    Nielsen AT, Houlihan WJ (1969) The aldol condensation. In: Organic reactions, 2nd edn, vol 16. Wiley, Hoboken, NJ, USA, pp 1–438. https://doi.org/10.1002/0471264180.or016.01

    Google Scholar 

  38. 38.

    Barnes D, Zuman P (1973) Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes. J Electroanal Chem Interfacial Electrochem 46:323–342. https://doi.org/10.1016/S0022-0728(73)80140-8

    CAS  Article  Google Scholar 

  39. 39.

    Zuman P (1977) Effect of hydration on polarographic reduction of some carbonyl compounds. J Electroanal Chem Interfacial Electrochem 75:523–531. https://doi.org/10.1016/S0022-0728(77)80194-0

    CAS  Article  Google Scholar 

  40. 40.

    Podlovchenko BI, Petry OA, Frumkin AN, Lal H (1966) The behaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid. J Electroanal Chem 11:12–25. https://doi.org/10.1016/0022-0728(66)80053-0

    CAS  Article  Google Scholar 

  41. 41.

    Rodríguez JL, Souto RM, Fernández-Mérida L, Pastor E (2002) Revealing structural effects: electrochemical reactions of butanols on platinum. Chem Eur J 8:2134–2142. https://doi.org/10.1002/1521-3765(20020503)8:9<2134::AID-CHEM2134>3.0.CO;2-C

    Article  PubMed  Google Scholar 

  42. 42.

    Horányi G, Vertes G, König P (1973) Electrochemical oxidation and indirect electrochemical reduction of simple secondary alcohols. Naturwissenschaften 60:519–519. https://doi.org/10.1007/BF00603259

    Article  Google Scholar 

  43. 43.

    Birdja YY, Koper MTM (2017) The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J Am Chem Soc 139:2030–2034. https://doi.org/10.1021/jacs.6b12008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chien C-Y, Schade G (1988) A rotating disc study of crotyl alcohol reduction. Electrochim Acta 33:59–62. https://doi.org/10.1016/0013-4686(88)80032-X

    CAS  Article  Google Scholar 

  45. 45.

    Young WG, Nozaki K, Warner R (1939) The interconversion of crotyl alcohol and methylvinylcarbinol in aqueous sulfuric acid. J Am Chem Soc 61:2564–2565. https://doi.org/10.1021/ja01878a521

    CAS  Article  Google Scholar 

  46. 46.

    Young WG, Franklin JS (1966) The acid-catalyzed isomerization of α- and cis- and trans-γ-methylallyl alcohols. J Am Chem Soc 88:785–790. https://doi.org/10.1021/ja00956a034

    CAS  Article  Google Scholar 

  47. 47.

    Horányi G, Inzelt G, Torkos K (1979) Reductive cleavage of C-OH bonds in allyl position-formation of gaseous products in the course of the cathodic reduction of some simple unsaturated alcohols. J Electroanal Chem Interfacial Electrochem 101:101–108. https://doi.org/10.1016/S0022-0728(79)80082-0

    Article  Google Scholar 

  48. 48.

    Glasstone S, Hickling A (1939) The mechanism of the kolbe electrosynthesis and allied reactions. Trans Electrochem Soc 75:333–352. https://doi.org/10.1149/1.3498383

    Article  Google Scholar 

  49. 49.

    Schäfer H (1991) Kolbe reactions. In: Comprehensive organic synthesis, vol 3, pp 633–658. https://doi.org/10.1016/B978-0-08-052349-1.00075-5

  50. 50.

    Vadaszy R, Cover RE (1974) The electrochemistry of α-β unsaturated aldehydes. J Electroanal Chem Interfacial Electrochem 49:433–441. https://doi.org/10.1016/S0022-0728(74)80175-0

    CAS  Article  Google Scholar 

  51. 51.

    Barnes D, Zuman P (1969) Polarographic reduction of aldehydes and ketones. Part 6. Behaviour of cinnamaldehyde at lower pH-values. Trans Faraday Soc 65:1668–1680. https://doi.org/10.1039/TF9696501668

    CAS  Article  Google Scholar 

  52. 52.

    Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605. https://doi.org/10.1021/ja9061954

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Guo N, Caratzoulas S, Doren DJ, Sandler SI, Vlachos DG (2012) A perspective on the modeling of biomass processing. Energy Environ Sci 5:6703–6716. https://doi.org/10.1039/c2ee02663e

    CAS  Article  Google Scholar 

  54. 54.

    Román AM, Dudoff J, Baz A, Holewinski A (2017) Identifying “optimal” electrocatalysts: impact of operating potential and charge transfer model. ACS Catal 7:8641–8652. https://doi.org/10.1021/acscatal.7b03235

    CAS  Article  Google Scholar 

  55. 55.

    Matera S, Schneider WF, Heyden A, Savara A (2019) Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal 9:6624–6647. https://doi.org/10.1021/acscatal.9b01234

    CAS  Article  Google Scholar 

  56. 56.

    Banerjee S, Han X, Thoi VS (2019) Modulating the electrode–electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal 9:5631–5637. https://doi.org/10.1021/acscatal.9b00449

    CAS  Article  Google Scholar 

  57. 57.

    Cantu DC, Padmaperuma AB, Nguyen M-T, Akhade SA, Yoon Y, Wang Y-G, Lee M-S, Glezakou V-A, Rousseau R, Lilga MA (2018) A combined experimental and theoretical study on the activity and selectivity of the electrocatalytic hydrogenation of aldehydes. ACS Catal 8:7645–7658. https://doi.org/10.1021/acscatal.8b00858

    CAS  Article  Google Scholar 

  58. 58.

    Ilikti H, Rekik N, Thomalla M (2003) Electrocatalytic hydrogenation of alkyl-substituted phenols in aqueous solutions at a Raney nickel electrode in the presence of a non-micelle-forming cationic surfactant. J Appl Electrochem 34:127–136. https://doi.org/10.1023/B:JACH.0000009932.06652.a0

    Article  Google Scholar 

  59. 59.

    Li Z, Kelkar S, Raycraft L, Garedew M, Jackson JE, Miller DJ, Saffron CM (2014) A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem 16:844–852. https://doi.org/10.1039/C3GC42303D

    CAS  Article  Google Scholar 

  60. 60.

    Hui J, Pakhira S, Bhargava R, Barton ZJ, Zhou X, Chinderle AJ, Mendoza-Cortes JL, Rodríguez-López J (2018) Modulating electrocatalysis on graphene heterostructures: physically impermeable yet electronically transparent electrodes. ACS Nano 12:2980–2990. https://doi.org/10.1021/acsnano.8b00702

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Diebold JP (2000) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils (report no. NREL/SR-570-27613), pp 1–59. NREL, Golden, CO. Available at: https://www.nrel.gov/docs/fy00osti/27613.pdf

  62. 62.

    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55:8164–8215. https://doi.org/10.1002/anie.201510351

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the University of Colorado Boulder for start-up funds as well as the National Renewable Energy Laboratory for supporting ZJB (UGA-0-41026-103) and the U.S. Department of Education for supporting TDS through a Graduate Assistance in Areas of National Need fellowship (GAANN). This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The authors thank Alex M. Román for performing LC–MS analysis of some electrolysis product mixtures as well as Ken Ngo for donating gas sample bags. In addition, the authors thank Adam Baz, Alexander Delluva, Jessica Dudoff, Joseph C. Hasse, and Alex M. Román for stimulating discussions and assistance running experiments.

Author information




ZJB, GHG, NK, JAS, and AH contributed to the study conception and design. Material preparation and data collection were performed by ZJB, GHG, NK, and TDS. Data analysis was performed by ZJB. The first draft of the manuscript was written by ZJB, and all authors commented on subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adam Holewinski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3004.8 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barton, Z.J., Garrett, G.H., Kurtyka, N. et al. Electrochemical reduction selectivity of crotonaldehyde on copper. J Appl Electrochem (2020). https://doi.org/10.1007/s10800-020-01415-2

Download citation


  • Electrochemical reduction
  • Biomass
  • Bulk electrolysis
  • Crotonaldehyde
  • Electrocatalysis