Skip to main content
Log in

Structural and electrochemical characterization of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 with excellent high-temperature cycling stability synthesized by a simple route

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple method was applied to control the morphology of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 in the sintering process by premixing a suitable proportion of acetylene black in the raw material. Both specific discharge capacity and cycling stability of the samples were improved. The results demonstrated that the doped samples showed excellent electrochemical performance at both 25 °C and 55 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu G, Liu Z, Zhang C et al (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3(8):4092–4123

    Article  CAS  Google Scholar 

  2. Jang DH, Shin YJ et al (1996) Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cells. J Elctrochem Soc 143(7):2204–2211

    Article  CAS  Google Scholar 

  3. Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39(2):142–147

    Article  CAS  Google Scholar 

  4. Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells. J Electrochem Soc 144(10):3342–3348

    Article  CAS  Google Scholar 

  5. Wang L-F, Chin-Ching Ou et al (2003) Study of Mn dissolution from LiMn2O4 spinel electrodes using rotating ring-disk collection experiments. J Electrochem Soc 150(7):A905–A911

    Article  CAS  Google Scholar 

  6. Bhandari A, Bhattacharya J (2017) Review—manganese dissolution from spinel cathode: few unanswered questions. J Electrochem Soc 164(2):A106–A127

    Article  CAS  Google Scholar 

  7. Amarilla J, Petrov K et al (2009) Sucrose-aided combustion synthesis of nanosized LiMn1.99yLiyM0.01O4 (M= Al3+, Ni2+, Cr3+, Co3+, y= 001 and 006) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J Power Sources 191(2):591–600

    Article  CAS  Google Scholar 

  8. Xiong LL, Xu YL et al (2012) Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J Power Sources 199:214–219

    Article  CAS  Google Scholar 

  9. Takahashi M, Yoshida T et al (2006) Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochim Acta 51(25):5508–5514

    Article  CAS  Google Scholar 

  10. Hao Wu, Liu W et al (2015) Influence of co-substitution on structure and electrochemical performances of Li-rich spinel LiMn2O4. Integr Ferroelectr 164(1):23–32

    Article  CAS  Google Scholar 

  11. Yao Fu, Jiang H et al (2015) Synergistic enhancement effect of Al doping and highly active facets of LiMn2O4 cathode materials for lithium-ion batteries. Ind Eng Chem Res 54(15):3800–3805

    Article  CAS  Google Scholar 

  12. Lee YK, Park J et al (2016) Electronic and bonding properties of LiMn2O4 spinel with different surface orientations and doping elements and their effects on manganese dissolution. J Electrochem Soc 163(7):A1359–A1368

    Article  CAS  Google Scholar 

  13. Akhoon SA, Rubab S et al (2017) Enhanced cycling properties and better rate capabilities of Al-doped LiMn2O4 nanorods and nanospheres. Mater Res Express 4(10):105016

    Article  CAS  Google Scholar 

  14. Iqbal A, Iqbal Y et al (2017) Low content Ni and Cr Co-doped LiMn2O4 with enhanced capacity retention. Ionics 23(8):1995–2003

    Article  CAS  Google Scholar 

  15. Yi TF, Xie Y et al (2012) High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J Power Sources 211:59–65

    Article  CAS  Google Scholar 

  16. Xia Y, Zhang WK et al (2011) Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater Sci Eng B 176(8):633–639

    Article  CAS  Google Scholar 

  17. Li J, Tian Y et al (2012) Influence of Nb5+ doping on structure and electrochemical properties of spinel Li1.02Mn2O4. J Mater Sci Technol 28(9):817–822

    Article  CAS  Google Scholar 

  18. Benedek R, Thackeray MM (2011) Simulation of the surface structure of lithium manganese oxide spinel. Phys Rev B 83:195439

    Article  CAS  Google Scholar 

  19. Kaga K, Hiroaki M et al (2010) Effect of polyhedron primary particle of Mn-spinel on electrochemical and Mn dissolution properties at high temperature. In: The 51th battery symposium in Japan

  20. Lee SXLT, Huasheng Hu et al (2013) Morphology-control preparation and electrochemical performance of Mn-spinel cathode materials. China Sci Bull 58:3350–3356 (in Chinese)

    Article  Google Scholar 

  21. Kim JS, Kim KS et al (2012) A Truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Lett 12:6358–6365

    Article  CAS  Google Scholar 

  22. Bao SJ, Li CM et al (2007) Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources. J Power Sources 164(2):885–889

    Article  CAS  Google Scholar 

  23. Jiang JB, Du K et al (2013) Syntheses of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance. J Alloys Compds 577:138–142

    Article  CAS  Google Scholar 

  24. Fey GTK, Cho YD et al (2004) A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4. Mater Chem Phys 87(2–3):275–284

    Article  CAS  Google Scholar 

  25. Yu AS, Frech R (2002) Novel high rate lithium intercalation cathode materials. J Electrochem Soc 149(2):A99–A102

    Article  CAS  Google Scholar 

  26. Zhang Na, Tang Z et al (2005) Research on performance of spinel LiMn1.98RE0.02O4 (RE=Ce, Nd). J Mater Eng 11:35–37

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Program of State Grid Corporation of China (Program Title: Development of Manganese-based Lithium Ion Batteries with Low Cost and High Safety).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Yu or Kai Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, K., Hu, C., Sun, Z. et al. Structural and electrochemical characterization of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 with excellent high-temperature cycling stability synthesized by a simple route. J Appl Electrochem 50, 451–462 (2020). https://doi.org/10.1007/s10800-020-01403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01403-6

Keywords

Navigation