Skip to main content
Log in

Platinum decorated polythiophene modified stainless steel for electrocatalytic oxidation of benzyl alcohol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum nanoparticles were electrochemically deposited on conducting polymer polythiophene (PTh)-coated stainless steel (SS) substrate. A thin layer of PTh on the steel substrate facilitates uniform deposition of Pt nanoparticles on the substrate, thereby improving the surface area to a great extent. The electrochemical properties of the modified electrodes were analyzed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The physicochemical properties of the modified electrodes were investigated by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The proposed method has been applied for the electrocatalytic oxidation of benzyl alcohol in the presence of a mediator, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). Cyclic voltammetric studies reveal that the electrocatalytic activity of Pt–PTh/SS electrode is higher than that of PTh/SS electrode toward the conversion of benzyl alcohol to benzaldehyde.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Selvaraj V, Alagar M, Hamerton I (2007) Nanocatalysts impregnated polythiophene electrodes for the electrooxidation of formic acid. Appl Catal B 73:172–179. https://doi.org/10.1016/j.apcatb.2006.07.020

    Article  CAS  Google Scholar 

  2. Kelaidopoulu A, Papoutsis A, Kokindas G, Napporn WT, Leger J-M, Lamy C (1999) Electrooxidation of β-D (+) glucose on bare and upd modified platinum particles dispersed in polyaniline. J Appl Electrochem 29:101–107. https://doi.org/10.1023/A:1003433206439

    Article  Google Scholar 

  3. Tsakova V, Milchev A (1991) Electrochemical formation and stability of polyaniline films. Electrochim Acta 36:1579–1583. https://doi.org/10.1016/0013-4686(91)85009-V

    Article  CAS  Google Scholar 

  4. Bose CSC, Rajeshwar K (1992) Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. J Electroanal Chem 333:235–256. https://doi.org/10.1016/0022-0728(92)80394-J

    Article  CAS  Google Scholar 

  5. Tourillion G, Garnier F (1984) Inclusion of metallic aggregates in organic conducting polymers. A new catalytic system, [poly (3-methylthiophene)-Ag-Pt], for proton electrochemical reduction. J Phys Chem 88:5281–5285. https://doi.org/10.1021/j150666a034

    Article  Google Scholar 

  6. Laborde H, Leger J-M, Lamy C (1994) Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: platinum in polyaniline. J Appl Electrochem 24:219–226. https://doi.org/10.1007/BF00242887

    Article  CAS  Google Scholar 

  7. Oyama N, Anson FC (1979) Polymeric ligands as anchoring groups for the attachment of metal complexes to graphite electrode surfaces. J Am Chem Soc 101:3450–3456. https://doi.org/10.1021/ja00507a005

    Article  CAS  Google Scholar 

  8. Abruna HD, Denisevich P, Umana M, Meyer JJ, Murray RW (1981) Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J Am Chem Soc 103:1–5. https://doi.org/10.1021/ja00391a001

    Article  CAS  Google Scholar 

  9. Zhu ZZ, Wang Z, Li HL (2008) Functional multi walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl Surf Sci 54:2934–2940. https://doi.org/10.1016/j.apsusc.2007.10.033

    Article  CAS  Google Scholar 

  10. Harish S, Mathiyarasu J, Phani KLN, Yeganaraman V (2009) Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett 128:197–202. https://doi.org/10.1007/s10562-008-9732-x

    Article  CAS  Google Scholar 

  11. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409. https://doi.org/10.1039/B816681C

    Article  CAS  PubMed  Google Scholar 

  12. Reddy KR, Byung S, Kwang R, Jin-Chun K, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603. https://doi.org/10.1016/j.synthmet.2008.11.030

    Article  CAS  Google Scholar 

  13. Joice EK, Anitha V, Sudhakar YN, Bala G, Joseph S (2018) Poly (aniline) decorated with nanocactus platinum on carbon fiber paper and its electrocatalytic behavior toward toluene oxidation. J Electrochem Soc 165:H399–H406. https://doi.org/10.1149/2.1121807jes

    Article  CAS  Google Scholar 

  14. Lemos HG, Santos SF, Venancio EC (2015) Polyaniline-Pt and polypyrrole-Pt nanocomposites: effect of supporting type and morphology on the nanoparticles size and distribution. Synth Met 203:22–30. https://doi.org/10.1016/j.synthmet.2015.02.006

    Article  CAS  Google Scholar 

  15. Cao Y, Qiu J, Smith P (1995) Effect of solvents and co-solvents on the processibility of polyaniline: I. Solubility and conductivity studies. Synth Met 69:187–190. https://doi.org/10.1016/0379-6779(94)02412-R

    Article  CAS  Google Scholar 

  16. Kausar A (2016) Electromagnetic interference shielding of polyaniline/Poloxalene/carbon black composite. Int J Mater Chem 6:6–11

    Google Scholar 

  17. Rahman MA, Kumar P, Park DS, Shim YB (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8:118–141. https://doi.org/10.3390/s8010118

    Article  CAS  PubMed  Google Scholar 

  18. Kazuyoshi T, Tokushige S, Shenglong W, Tokio Y (1988) A study of the electropolymerization of thiophene. Synth Met 24:203–215. https://doi.org/10.1016/0379-6779(88)90258-5

    Article  Google Scholar 

  19. Ballav N, Biswas M (2003) Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym Int 52:179–184. https://doi.org/10.1002/pi.1001

    Article  CAS  Google Scholar 

  20. Waltman RJ, Bargon J, Daiz AF (1983) Electrochemical studies of some conducting polythiophene films. J Phys Chem 87:1459–1463. https://doi.org/10.1021/j100231a035

    Article  CAS  Google Scholar 

  21. Dai Y, Zhu F, Zhang H, Ma H, Wang W, Lei J (2016) Electrosynthesis and characterization of polythiophene and corrosion protection for stainless steel. Int J Electrochem Sci 11:4084–4091. https://doi.org/10.20964/110376

    Article  CAS  Google Scholar 

  22. Kost KM, Bartak DE, Kazee B, Kuwana T (1988) Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Anal Chem 60:2379–2384. https://doi.org/10.1021/ac00172a012

    Article  CAS  Google Scholar 

  23. Dominguez SD, Pardilla JA, Murcia AB, Morallon E, Amoros DC (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268. https://doi.org/10.1007/s10800-007-9435-9

    Article  CAS  Google Scholar 

  24. Schrebler R, Delvalle MA, Gomez H, Veas C, Cordova R (1995) Preparation of polythiophene-modified electrodes by electrodeposition of Pt and Pt + Pb. Application to formic acid electro-oxidation. J Electroanal Chem 380:219–227. https://doi.org/10.1016/0022-0728(94)03628-G

    Article  Google Scholar 

  25. Swathirajan S, Mikhail YM (1992) Methanol oxidation on Platinum-Tin catalysts dispersed on poly(3-methyl)thiophene conducting polymer. J Electrochem Soc 139:2105–2110. https://doi.org/10.1149/1.2221186

    Article  CAS  Google Scholar 

  26. Wang F, Xu J, Li X, Gao J, Zhuo L, Ohnishi R (2005) Liquid phase oxidation of toluene to benzaldehyde with molecular oxygen over copper-based heterogeneous catalysts. Adv Synth Catal 347:1987–1992. https://doi.org/10.1002/adsc.200505107

    Article  CAS  Google Scholar 

  27. Nehamiah J, Sengupta S, Basu JK (2009) Selective production of benzaldehyde by permanganate oxidation of benzyl alcohol using 18-crown-6 as phase transfer catalyst. J Mol Catal A: Chem 309:153–158. https://doi.org/10.1016/j.molcata.2009.05.009

    Article  CAS  Google Scholar 

  28. Zhou C, Chen Y, Guo Z, Wang X, Yang Y (2011) Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem Commun 47:7473–7475. https://doi.org/10.1039/C1CC12264A

    Article  CAS  Google Scholar 

  29. Herath AC, Becker JY (2008) 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated catalytic oxidation of benzyl alcohol in acetonitrile and ionic liquid 1-buthyl-3-methyl-imidazolium hexafluorophosphate [BMIM][PF6]: kinetic analysis. Electrochem Acta 53:4324–4330. https://doi.org/10.1016/j.electacta.2007.12.082

    Article  CAS  Google Scholar 

  30. Green WA, Hills Cousins JT, Richard CD, Brown Pletcher D, Leach SG (2013) A voltammetric study of the 2, 2, 6, 6-tetramethylpiperidin-1-oxyl (TEMPO) mediated oxidation of benzyl alcohol in tert-butanol/water. Electrochem Acta 113:550–556. https://doi.org/10.1016/j.electacta.2013.09.070

    Article  CAS  Google Scholar 

  31. Dikalov SI, Dikalov AE, Manson RP (2002) Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Arch Biochem Biophys 402:218–226. https://doi.org/10.1016/S0003-9861(02)00064-4

    Article  CAS  PubMed  Google Scholar 

  32. Wei Y, Chan CC, Tian J, Jang GW, Hsueh KF (1991) Electrochemical polymerization of thiophenes in the presence of bithiophene or terthiophene: kinetics and mechanism of the polymerization. Chem Mater 3:888–897. https://doi.org/10.1021/cm00017a026

    Article  CAS  Google Scholar 

  33. Luca LD, Giacomelli G, Simonetta M, Andrea P (2003) Trichloroisocyanuric/TEMPO oxidation of alcohols under mild conditions: a close investigation. J Org Chem 68:4999–5001. https://doi.org/10.1021/jo034276b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to AFMM, IISc and MNCF, CeNSe, and IISc, Bengaluru for providing facilities for SEM, XRD, Raman spectroscopic and FT-IR analyses, respectively. The authors would like to thank STIC-SAIF, Cochin University, Kochi for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Varghese.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joice, E.K., Rison, S., Akshaya, K.B. et al. Platinum decorated polythiophene modified stainless steel for electrocatalytic oxidation of benzyl alcohol. J Appl Electrochem 49, 937–947 (2019). https://doi.org/10.1007/s10800-019-01336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01336-9

Keywords

Navigation