Journal of Applied Electrochemistry

, Volume 49, Issue 7, pp 693–703 | Cite as

Cu-based N-doped/undoped graphene nanocomposites as electrocatalysts for the oxygen reduction

  • Marta NunesEmail author
  • Diana M. FernandesEmail author
  • M. V. Morales
  • I. Rodríguez-Ramos
  • A. Guerrero-Ruiz
  • Cristina Freire
Research Article
Part of the following topical collections:
  1. Fuel cells


The development of efficient electrocatalysts for the energy-related reactions, based on earth-abundant elements, is extremely important for a sustainable energetic future. Herein, we report the application of Cu nanoparticles supported on undoped and N-doped graphene—Cu/GOE and Cu/GOE-u composites, respectively—as electrocatalysts for the oxygen reduction reaction (ORR). All the materials showed ORR electrocatalytic activities in alkaline medium. The Cu/GOE-u composite exhibited the most promising performance, with an onset potential of 0.84 V and a current density of jL = − 4.4 mA cm−2 (vs. 0.84 V and − 2.8 mA cm−2 for Cu/GOE), which revealed the great influence of the created Cu–Nx/C active sites on the ORR electrocatalytic activity. The pure GOE-u support showed worse performance than the GOE, demonstrating that the N-doping advantage is not linear and also depends on the type and amount of accessible active sites created. The N-doping allowed an increase in the selectivity for the 4-electron process, resulting in a % of H2O2 produced < 25% for Cu/GOE-u (vs. almost 75% for Cu/GOE). Both nanocomposites revealed good tolerance to methanol crossover, and the Cu/GOE-u displayed a moderate long-term electrochemical stability, with current retention of 84% after 20,000 s.

Graphical abstract


Cu-based nanocomposites Graphene N-doping Cu–Nx/C active sites Oxygen reduction reaction 



This work was co-financed by Fundação para a Ciência e a Tecnologia (FCT)/MEC and EU under FEDER founds (Grant No. POCI/01/0145/FEDER/007265) and Programme PT2020 (Project UID/QUI/50006/2013), Project Charphite—ERAMIN/0006/2015—and by Project UNIRCELL—POCI-01-0145-FEDER-016422—funded by European Structural and Investment Funds (FEEI) through—Programa Operacional Competitividade e Internacionalização—COMPETE2020.

Supplementary material

10800_2019_1317_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1533 kb)


  1. 1.
    Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang H-L, Dai L (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110. CrossRefGoogle Scholar
  2. 2.
    Yan D, Li Y, Huo J, Chen R, Dai L, Wang S (2017) Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater. Google Scholar
  3. 3.
    Ni Y, Chen Z, Kong F, Qiao Y, Kong A, Shan Y (2018) Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction. Electrochim Acta 272:233–241. CrossRefGoogle Scholar
  4. 4.
    Kuang M, Wang Q, Han P, Zheng G (2017) Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater 7(17):1700193. CrossRefGoogle Scholar
  5. 5.
    Zhu YP, Guo C, Zheng Y, Qiao S-Z (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. ACC Chem Res 50(4):915–923. CrossRefGoogle Scholar
  6. 6.
    Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S-Z (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118(13):6337–6408. CrossRefGoogle Scholar
  7. 7.
    Liu D, Tao L, Yan D, Zou Y, Wang S (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5(14):1775–1785. CrossRefGoogle Scholar
  8. 8.
    Lai Q, Zhao Y, Zhu J, Liang Y, He J, Chen J (2018) Directly anchoring highly dispersed copper sites on nitrogen-doped carbon for enhanced oxygen reduction electrocatalysis. ChemElectroChem 5(14):1822–1826. CrossRefGoogle Scholar
  9. 9.
    Nunes M, Rocha IM, Fernandes DM, Mestre AS, Moura CN, Carvalho AP, Pereira MFR, Freire C (2015) Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Adv 5(124):102919–102931. CrossRefGoogle Scholar
  10. 10.
    Liu L, Zeng G, Chen J, Bi L, Dai L, Wen Z (2018) N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49:393–402. CrossRefGoogle Scholar
  11. 11.
    Pham CV, Britton B, Böhm T, Holdcroft S, Thiele S (2018) Doped, defect-enriched carbon nanotubes as an efficient oxygen reduction catalyst for anion exchange membrane fuel cells. Adv Mater Interfaces 5(12):1800184. CrossRefGoogle Scholar
  12. 12.
    Rahsepar M, Nobakht MR, Kim H, Pakshir M (2018) Facile enhancement of the active catalytic sites of N-doped graphene as a high performance metal-free electrocatalyst for oxygen reduction reaction. Appl Surf Sci 447:182–190. CrossRefGoogle Scholar
  13. 13.
    Mun Y, Kim MJ, Park S-A, Lee E, Ye Y, Lee S, Kim Y-T, Kim S, Kim O-H, Cho Y-H, Sung Y-E, Lee J (2018) Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells. Appl Catal B Environ 222:191–199. CrossRefGoogle Scholar
  14. 14.
    Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J (2018) Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. J Mater Chem A 6(6):2527–2539. CrossRefGoogle Scholar
  15. 15.
    Zhang M, Dai Q, Zheng H, Chen M, Dai L (2018) Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater 30(10):1705431. CrossRefGoogle Scholar
  16. 16.
    Osmieri L, Escudero-Cid R, Armandi M, Ocón P, Monteverde Videla AHA, Specchia S (2018) Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim Acta 266:220–232. CrossRefGoogle Scholar
  17. 17.
    Kang YS, Heo Y, Kim P, Yoo SJ (2017) Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. J Ind Eng Chem 52:35–41. CrossRefGoogle Scholar
  18. 18.
    Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J, Xie S, Si R, Yang F, Miao S, Guo X, Wang G, Bao X (2016) Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ Sci 9:3739–3745. Google Scholar
  19. 19.
    Fan W, Li Z, You C, Zong X, Tian X, Miao S, Shu T, Li C, Liao S (2017) Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy 37:187–194. CrossRefGoogle Scholar
  20. 20.
    Lu L, Fan J, Lei W, Ouyang Y, Yao D, Xia X, Hao Q (2018) Multiple metal (Cu, Mn, Fe) centered species simultaneously combined nitrogen-doped graphene as a new electrocatalyst for oxygen reduction in alkaline and neutral solutions. ChemCatChem 10(11):2471–2480. CrossRefGoogle Scholar
  21. 21.
    Morales MV, Rocha M, Freire C, Asedegbega-Nieto E, Gallegos-Suarez E, Rodriguez-Ramos I, Guerrero-Ruiz A (2017) Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon 111:150–161. CrossRefGoogle Scholar
  22. 22.
    Dongil AB, Bachiller-Baeza B, Guerrero-Ruiz A, Rodriguez-Ramos I (2011) Chemoselective hydrogenation of cinnamaldehyde: a comparison of the immobilization of Ru-phosphine complex on graphite oxide and on graphitic surfaces. J Catal 282(2):299–309. CrossRefGoogle Scholar
  23. 23.
    Morales MV, Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A (2016) Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon 102:426–436. CrossRefGoogle Scholar
  24. 24.
    Mou ZG, Chen XY, Du YK, Wang XM, Yang P, Wang SD (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258(5):1704–1710. CrossRefGoogle Scholar
  25. 25.
    Bard AJF, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New YorkGoogle Scholar
  26. 26.
    Gao SY, Fan H, Zhang SX (2014) Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J Mater Chem A 2(43):18263–18270. CrossRefGoogle Scholar
  27. 27.
    Jahan M, Liu ZL, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23(43):5363–5372. CrossRefGoogle Scholar
  28. 28.
    Delmondo L, Salvador GP, Munoz-Tabares JA, Sacco A, Garino N, Castellino M, Gerosa M, Massaglia G, Chiodoni A, Quaglio M (2016) Nanostructured MnxOy for oxygen reduction reaction (ORR) catalysts. Appl Surf Sci 388:631–639. CrossRefGoogle Scholar
  29. 29.
    Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9(5):1771–1782. CrossRefGoogle Scholar
  30. 30.
    Hoang S, Guo SW, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12(1):26–32. CrossRefGoogle Scholar
  31. 31.
    Teo WZ, Ambrosi A, Pumera M (2013) Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun 28:51–53. CrossRefGoogle Scholar
  32. 32.
    Lan YC, Gai C, Kenis PJA, Lu JX (2014) Electrochemical reduction of carbon dioxide on Cu/CuO core/shell catalysts. ChemElectroChem 1(9):1577–1582. CrossRefGoogle Scholar
  33. 33.
    Siperko LM, Kuwana T (1987) Electrochemical and spectroscopic studies of metal hexacyanometalate films.3. Equilibrium and kinetic-studies of cupric hexacyanoferrate. Electrochim Acta 32:765–771. CrossRefGoogle Scholar
  34. 34.
    Baioni AP, Vidotti M, Fiorito PA, Torresi SIC (2008) Copper hexacyanoferrate nanoparticles modified electrodes: a versatile tool for biosensors. J Electroanal Chem 622:219–224. CrossRefGoogle Scholar
  35. 35.
    Kim D-W, Liab OL, Saito N (2015) Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials. Phys Chem Chem Phys 17:407–413. CrossRefGoogle Scholar
  36. 36.
    Zhang J, Li H, Guo P, Maa H, Zhao XS (2016) Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. J Mater Chem A 4:8497–8511. CrossRefGoogle Scholar
  37. 37.
    Nunes M, Fernandes DM, Morales MV, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C (2019) Cu and Pd nanoparticles supported on a graphitic carbon material as bifunctional HER/ORR electrocatalysts. Catal Today. Google Scholar
  38. 38.
    Osmieri L, Videla AHAM, Ocón P, Specchia S (2017) Kinetics of oxygen electroreduction on Me−N−C (Me = Fe Co, Cu) catalysts in acidic medium: insights on the effect of the transition metal. J Phys Chem C 121:17796–17817. CrossRefGoogle Scholar
  39. 39.
    Guo JH, Shi YT, Bai XG, Wang XC, Ma TL (2015) Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J Mater Chem A 2015:24397–24404. CrossRefGoogle Scholar
  40. 40.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:21. CrossRefGoogle Scholar
  41. 41.
    Jiang ZQ, Jiang ZJ, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4:5877–5889. CrossRefGoogle Scholar
  42. 42.
    Song MY, Park HY, Yang DS, Bhattacharjya D, Yu JS (2014) Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. ChemSuschem 7:1755–1763. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marta Nunes
    • 1
    Email author
  • Diana M. Fernandes
    • 1
    Email author
  • M. V. Morales
    • 2
  • I. Rodríguez-Ramos
    • 2
  • A. Guerrero-Ruiz
    • 3
  • Cristina Freire
    • 1
  1. 1.REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Instituto de Catálisis y Petroleoquímica, CSICMadridSpain
  3. 3.Departamento de Química Inorgánica y Química Técnica, Facultad de CienciasUNEDMadridSpain

Personalised recommendations