Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 7, pp 693–703 | Cite as

Cu-based N-doped/undoped graphene nanocomposites as electrocatalysts for the oxygen reduction

  • Marta NunesEmail author
  • Diana M. FernandesEmail author
  • M. V. Morales
  • I. Rodríguez-Ramos
  • A. Guerrero-Ruiz
  • Cristina Freire
Research Article
  • 158 Downloads
Part of the following topical collections:
  1. Fuel cells

Abstract

The development of efficient electrocatalysts for the energy-related reactions, based on earth-abundant elements, is extremely important for a sustainable energetic future. Herein, we report the application of Cu nanoparticles supported on undoped and N-doped graphene—Cu/GOE and Cu/GOE-u composites, respectively—as electrocatalysts for the oxygen reduction reaction (ORR). All the materials showed ORR electrocatalytic activities in alkaline medium. The Cu/GOE-u composite exhibited the most promising performance, with an onset potential of 0.84 V and a current density of jL = − 4.4 mA cm−2 (vs. 0.84 V and − 2.8 mA cm−2 for Cu/GOE), which revealed the great influence of the created Cu–Nx/C active sites on the ORR electrocatalytic activity. The pure GOE-u support showed worse performance than the GOE, demonstrating that the N-doping advantage is not linear and also depends on the type and amount of accessible active sites created. The N-doping allowed an increase in the selectivity for the 4-electron process, resulting in a % of H2O2 produced < 25% for Cu/GOE-u (vs. almost 75% for Cu/GOE). Both nanocomposites revealed good tolerance to methanol crossover, and the Cu/GOE-u displayed a moderate long-term electrochemical stability, with current retention of 84% after 20,000 s.

Graphical abstract

Keywords

Cu-based nanocomposites Graphene N-doping Cu–Nx/C active sites Oxygen reduction reaction 

Notes

Acknowledgements

This work was co-financed by Fundação para a Ciência e a Tecnologia (FCT)/MEC and EU under FEDER founds (Grant No. POCI/01/0145/FEDER/007265) and Programme PT2020 (Project UID/QUI/50006/2013), Project Charphite—ERAMIN/0006/2015—and by Project UNIRCELL—POCI-01-0145-FEDER-016422—funded by European Structural and Investment Funds (FEEI) through—Programa Operacional Competitividade e Internacionalização—COMPETE2020.

Supplementary material

10800_2019_1317_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1533 kb)

References

  1. 1.
    Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang H-L, Dai L (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110.  https://doi.org/10.1016/j.nanoen.2015.12.032 CrossRefGoogle Scholar
  2. 2.
    Yan D, Li Y, Huo J, Chen R, Dai L, Wang S (2017) Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater.  https://doi.org/10.1002/adma.201606459 Google Scholar
  3. 3.
    Ni Y, Chen Z, Kong F, Qiao Y, Kong A, Shan Y (2018) Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction. Electrochim Acta 272:233–241.  https://doi.org/10.1016/j.electacta.2018.04.002 CrossRefGoogle Scholar
  4. 4.
    Kuang M, Wang Q, Han P, Zheng G (2017) Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater 7(17):1700193.  https://doi.org/10.1002/aenm.201700193 CrossRefGoogle Scholar
  5. 5.
    Zhu YP, Guo C, Zheng Y, Qiao S-Z (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. ACC Chem Res 50(4):915–923.  https://doi.org/10.1021/acs.accounts.6b00635 CrossRefGoogle Scholar
  6. 6.
    Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S-Z (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118(13):6337–6408.  https://doi.org/10.1021/acs.chemrev.7b00689 CrossRefGoogle Scholar
  7. 7.
    Liu D, Tao L, Yan D, Zou Y, Wang S (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5(14):1775–1785.  https://doi.org/10.1002/celc.201800086 CrossRefGoogle Scholar
  8. 8.
    Lai Q, Zhao Y, Zhu J, Liang Y, He J, Chen J (2018) Directly anchoring highly dispersed copper sites on nitrogen-doped carbon for enhanced oxygen reduction electrocatalysis. ChemElectroChem 5(14):1822–1826.  https://doi.org/10.1002/celc.201800058 CrossRefGoogle Scholar
  9. 9.
    Nunes M, Rocha IM, Fernandes DM, Mestre AS, Moura CN, Carvalho AP, Pereira MFR, Freire C (2015) Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Adv 5(124):102919–102931.  https://doi.org/10.1039/C5RA20874B CrossRefGoogle Scholar
  10. 10.
    Liu L, Zeng G, Chen J, Bi L, Dai L, Wen Z (2018) N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49:393–402.  https://doi.org/10.1016/j.nanoen.2018.04.061 CrossRefGoogle Scholar
  11. 11.
    Pham CV, Britton B, Böhm T, Holdcroft S, Thiele S (2018) Doped, defect-enriched carbon nanotubes as an efficient oxygen reduction catalyst for anion exchange membrane fuel cells. Adv Mater Interfaces 5(12):1800184.  https://doi.org/10.1002/admi.201800184 CrossRefGoogle Scholar
  12. 12.
    Rahsepar M, Nobakht MR, Kim H, Pakshir M (2018) Facile enhancement of the active catalytic sites of N-doped graphene as a high performance metal-free electrocatalyst for oxygen reduction reaction. Appl Surf Sci 447:182–190.  https://doi.org/10.1016/j.apsusc.2018.03.227 CrossRefGoogle Scholar
  13. 13.
    Mun Y, Kim MJ, Park S-A, Lee E, Ye Y, Lee S, Kim Y-T, Kim S, Kim O-H, Cho Y-H, Sung Y-E, Lee J (2018) Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells. Appl Catal B Environ 222:191–199.  https://doi.org/10.1016/j.apcatb.2017.10.015 CrossRefGoogle Scholar
  14. 14.
    Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J (2018) Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. J Mater Chem A 6(6):2527–2539.  https://doi.org/10.1039/C7TA09187G CrossRefGoogle Scholar
  15. 15.
    Zhang M, Dai Q, Zheng H, Chen M, Dai L (2018) Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater 30(10):1705431.  https://doi.org/10.1002/adma.201705431 CrossRefGoogle Scholar
  16. 16.
    Osmieri L, Escudero-Cid R, Armandi M, Ocón P, Monteverde Videla AHA, Specchia S (2018) Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim Acta 266:220–232.  https://doi.org/10.1016/j.electacta.2018.02.036 CrossRefGoogle Scholar
  17. 17.
    Kang YS, Heo Y, Kim P, Yoo SJ (2017) Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. J Ind Eng Chem 52:35–41.  https://doi.org/10.1016/j.jiec.2017.03.019 CrossRefGoogle Scholar
  18. 18.
    Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J, Xie S, Si R, Yang F, Miao S, Guo X, Wang G, Bao X (2016) Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ Sci 9:3739–3745.  https://doi.org/10.1039/c6ee01867j Google Scholar
  19. 19.
    Fan W, Li Z, You C, Zong X, Tian X, Miao S, Shu T, Li C, Liao S (2017) Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy 37:187–194.  https://doi.org/10.1016/j.nanoen.2017.05.001 CrossRefGoogle Scholar
  20. 20.
    Lu L, Fan J, Lei W, Ouyang Y, Yao D, Xia X, Hao Q (2018) Multiple metal (Cu, Mn, Fe) centered species simultaneously combined nitrogen-doped graphene as a new electrocatalyst for oxygen reduction in alkaline and neutral solutions. ChemCatChem 10(11):2471–2480.  https://doi.org/10.1002/cctc.201800152 CrossRefGoogle Scholar
  21. 21.
    Morales MV, Rocha M, Freire C, Asedegbega-Nieto E, Gallegos-Suarez E, Rodriguez-Ramos I, Guerrero-Ruiz A (2017) Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon 111:150–161.  https://doi.org/10.1016/j.carbon.2016.09.079 CrossRefGoogle Scholar
  22. 22.
    Dongil AB, Bachiller-Baeza B, Guerrero-Ruiz A, Rodriguez-Ramos I (2011) Chemoselective hydrogenation of cinnamaldehyde: a comparison of the immobilization of Ru-phosphine complex on graphite oxide and on graphitic surfaces. J Catal 282(2):299–309.  https://doi.org/10.1016/j.jcat.2011.07.002 CrossRefGoogle Scholar
  23. 23.
    Morales MV, Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A (2016) Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon 102:426–436.  https://doi.org/10.1016/j.carbon.2016.02.089 CrossRefGoogle Scholar
  24. 24.
    Mou ZG, Chen XY, Du YK, Wang XM, Yang P, Wang SD (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258(5):1704–1710.  https://doi.org/10.1016/j.apsusc.2011.10.019 CrossRefGoogle Scholar
  25. 25.
    Bard AJF, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New YorkGoogle Scholar
  26. 26.
    Gao SY, Fan H, Zhang SX (2014) Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J Mater Chem A 2(43):18263–18270.  https://doi.org/10.1039/c4ta03558e CrossRefGoogle Scholar
  27. 27.
    Jahan M, Liu ZL, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23(43):5363–5372.  https://doi.org/10.1002/adfm.201300510 CrossRefGoogle Scholar
  28. 28.
    Delmondo L, Salvador GP, Munoz-Tabares JA, Sacco A, Garino N, Castellino M, Gerosa M, Massaglia G, Chiodoni A, Quaglio M (2016) Nanostructured MnxOy for oxygen reduction reaction (ORR) catalysts. Appl Surf Sci 388:631–639.  https://doi.org/10.1016/j.apsusc.2016.03.224 CrossRefGoogle Scholar
  29. 29.
    Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9(5):1771–1782.  https://doi.org/10.1039/c5ee02463c CrossRefGoogle Scholar
  30. 30.
    Hoang S, Guo SW, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12(1):26–32.  https://doi.org/10.1021/nl2028188 CrossRefGoogle Scholar
  31. 31.
    Teo WZ, Ambrosi A, Pumera M (2013) Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun 28:51–53.  https://doi.org/10.1016/j.elecom.2012.12.006 CrossRefGoogle Scholar
  32. 32.
    Lan YC, Gai C, Kenis PJA, Lu JX (2014) Electrochemical reduction of carbon dioxide on Cu/CuO core/shell catalysts. ChemElectroChem 1(9):1577–1582.  https://doi.org/10.1002/celc.201402182 CrossRefGoogle Scholar
  33. 33.
    Siperko LM, Kuwana T (1987) Electrochemical and spectroscopic studies of metal hexacyanometalate films.3. Equilibrium and kinetic-studies of cupric hexacyanoferrate. Electrochim Acta 32:765–771.  https://doi.org/10.1016/0013-4686(87)85107-1 CrossRefGoogle Scholar
  34. 34.
    Baioni AP, Vidotti M, Fiorito PA, Torresi SIC (2008) Copper hexacyanoferrate nanoparticles modified electrodes: a versatile tool for biosensors. J Electroanal Chem 622:219–224.  https://doi.org/10.1016/j.jelechem.2008.06.009 CrossRefGoogle Scholar
  35. 35.
    Kim D-W, Liab OL, Saito N (2015) Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials. Phys Chem Chem Phys 17:407–413.  https://doi.org/10.1039/C4CP03868A CrossRefGoogle Scholar
  36. 36.
    Zhang J, Li H, Guo P, Maa H, Zhao XS (2016) Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. J Mater Chem A 4:8497–8511.  https://doi.org/10.1039/C6TA01657J CrossRefGoogle Scholar
  37. 37.
    Nunes M, Fernandes DM, Morales MV, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C (2019) Cu and Pd nanoparticles supported on a graphitic carbon material as bifunctional HER/ORR electrocatalysts. Catal Today.  https://doi.org/10.1016/j.cattod.2019.04.043 Google Scholar
  38. 38.
    Osmieri L, Videla AHAM, Ocón P, Specchia S (2017) Kinetics of oxygen electroreduction on Me−N−C (Me = Fe Co, Cu) catalysts in acidic medium: insights on the effect of the transition metal. J Phys Chem C 121:17796–17817.  https://doi.org/10.1021/acs.jpcc.7b02455 CrossRefGoogle Scholar
  39. 39.
    Guo JH, Shi YT, Bai XG, Wang XC, Ma TL (2015) Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J Mater Chem A 2015:24397–24404.  https://doi.org/10.1039/C5TA06909B CrossRefGoogle Scholar
  40. 40.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:21.  https://doi.org/10.1038/srep13801 CrossRefGoogle Scholar
  41. 41.
    Jiang ZQ, Jiang ZJ, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4:5877–5889.  https://doi.org/10.1039/C6TA01349J CrossRefGoogle Scholar
  42. 42.
    Song MY, Park HY, Yang DS, Bhattacharjya D, Yu JS (2014) Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. ChemSuschem 7:1755–1763.  https://doi.org/10.1002/cssc.201400049 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marta Nunes
    • 1
    Email author
  • Diana M. Fernandes
    • 1
    Email author
  • M. V. Morales
    • 2
  • I. Rodríguez-Ramos
    • 2
  • A. Guerrero-Ruiz
    • 3
  • Cristina Freire
    • 1
  1. 1.REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Instituto de Catálisis y Petroleoquímica, CSICMadridSpain
  3. 3.Departamento de Química Inorgánica y Química Técnica, Facultad de CienciasUNEDMadridSpain

Personalised recommendations