Journal of Applied Electrochemistry

, Volume 49, Issue 5, pp 485–501 | Cite as

Formation and in vitro mineralization of electrochemically deposited coatings prepared on micro-arc oxidized titanium alloy

  • Hongshan San
  • Jin HuEmail author
  • Yufen Zhang
  • Jiaping Han
  • Shawei TangEmail author
Research Article
Part of the following topical collections:
  1. Electrodeposition


A Ca–P coating was electrochemically deposited on micro-arc oxidized Ti–6Al–4V to improve the alloy’s biological activity. The influence of the applied voltage on the microstructure and corrosion resistance of the Ca–P coating was investigated. The coating’s evolution mechanism in vitro was also discussed. The surfaces of the coated specimens were characterized by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, and potentiodynamic polarization tests. The results indicated that the applied voltage had a distinct effect on the phase composition, morphology, and thickness as well as the corrosion behavior of the deposited coatings. Dicalcium phosphate dihydrate tended to form at 2.5 V, whereas hydroxyapatite deposited at 4.5 V. The coating prepared at 3.5 V consisted of both dicalcium phosphate dihydrate and hydroxyapatite. All the coatings could induce apatite formation in simulated body fluid. The passive current densities of the specimens prepared at 3.5 V and 4.5 V were about two orders of magnitude smaller than that of the 2.5 V sample. The specimen prepared at 3.5 V obtained the best corrosion resistance, which had the highest resistance of the Ca–P coating and micro-arc oxidation layer.

Graphical abstract


Electrochemical deposition Calcium phosphates Corrosion behavior Coatings 



The Project is supported by the National Natural Science Foundation of China (Grant no. 51272055).


  1. 1.
    Gostin PF, Helth A, Voss A, Sueptitz R, Calin M, Eckert J, Gebert A (2013) Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy. J Biomed Mater Res B 101B(2):269–278CrossRefGoogle Scholar
  2. 2.
    Chen SH, Tsai WL, Chen PC, Fang A, Say WC (2016) Influence of applied voltages on mechanical properties and in-vitro performances of electroplated hydroxyapatite coatings on pure titanium. J Electrochem Soc 163(7):D305–D308CrossRefGoogle Scholar
  3. 3.
    Maho A, Linden S, Arnould C, Detriche S, Delhalle J, Mekhalif Z (2012) Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: a high quality scaffold for hydroxyapatite growth. J Colloid Interface Sci 371:150–158CrossRefPubMedGoogle Scholar
  4. 4.
    Duarte LT, Biaggio SR, Rocha RC, Bocchi N (2013) Surface characterization of oxides grown on the Ti-13Nb-13Zr alloy and their corrosion protection. Corros Sci 72:35–40CrossRefGoogle Scholar
  5. 5.
    Sweedy A, Bohner M, Baroud G (2017) Multimodal analysis of in vivo resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data. J Biomed Mater Res B 106(4):1567–1577CrossRefGoogle Scholar
  6. 6.
    Sun YX, Zhang JF, Li DJ, Wu XM, Xu LL, Pan XH, Li G (2017) Comparing the osteoconductive potential between tubular and cylindrical beta-tricalcium phosphate scaffolds: an experimental study in rats. J Biomed Mater Res B 106(5):1934–1940CrossRefGoogle Scholar
  7. 7.
    Klein A, Baranowski A, Ritz U, Götz H, Heinemann S, Mattyasovszky S, Rommens PM, Hofmann A (2018) Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J Biomed Mater Res B. CrossRefGoogle Scholar
  8. 8.
    Santos PS, Cestari TM, Paulin JB, Martins R, Rocha CA, Arantes RVN, Costa BC, dos Santos CM, Assis GF, Taga R (2017) Osteoinductive porous biphasic calcium phosphate ceramic as an alternative to autogenous bone grafting in the treatment of mandibular bone critical-size defects. J Biomed Mater Res B 106(4):1546–1557CrossRefGoogle Scholar
  9. 9.
    Rh Owen G, Dard M, Larjava H (2017) Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res Part B 106(6):2493–2512CrossRefGoogle Scholar
  10. 10.
    Mróz W, Budner B, Syroka R, Niedzielski K, Golański G, Slósarczyk A, Schwarze D, Douglas TEL (2015) In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. J Biomed Mater Res B 103(1):151–158CrossRefGoogle Scholar
  11. 11.
    Yeung WK, Reilly GC, Matthews A, Yerokhin A (2013) In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V alloy. J Biomed Mater Res B 101B(6):939–949CrossRefGoogle Scholar
  12. 12.
    Oliveira AL, Pedro AJ, Arroyo CS, Mano JF, Rodriguez G, Roman JS, Reis RL (2010) Biomimetic Ca-P coatings incorporating bisphosphonates produced on starch-based degradable biomaterials. J Biomed Mater Res 92B(1):55–67CrossRefGoogle Scholar
  13. 13.
    Liu GY, Tang SW, Hua J, Zhang YF, Wang YM, Liu F (2015) Corrosion behavior of micro-arc oxidized magnesium with calcium phosphate coating in flowing simulated body fluids. J Electrochem Soc 162(9):C426–C432CrossRefGoogle Scholar
  14. 14.
    Liu GY, Tang SW, Li D, Hu J (2014) Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids. Corros Sci 79:206–214CrossRefGoogle Scholar
  15. 15.
    Kheimehsari H, Izman S, Shirdar MR (2015) Effects of HA-coating on the surface morphology and corrosion behavior of a Co-Cr-based implant in different conditions. J Mater Eng Perform 24(6):2294–2302CrossRefGoogle Scholar
  16. 16.
    Yang YL, Serpersu K, He W, Paital SR, Dahotre NB (2011) Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V. Mater Sci Eng C 31(8):1643–1652CrossRefGoogle Scholar
  17. 17.
    Wijesinghe W, Mantilaka M, Senarathna KGC, Herath H, Premachandra TN, Ranasinghe CSK, Rajapakse R, Rajapakse RMG, Edirisinghe M, Mahalingam S et al (2016) Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Mater Sci Eng C 63:172–184CrossRefGoogle Scholar
  18. 18.
    Gu YW, Khor KA, Cheang P (2003) In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials 24(9):1603–1611CrossRefPubMedGoogle Scholar
  19. 19.
    Petro R, Schlesinger M (2014) Development of hybrid electro-electroless deposit (HEED) coatings and applications. J Electrochem Soc 161(10):D470–D475CrossRefGoogle Scholar
  20. 20.
    Durnelie N, Benhayoune H, Richard D, Laurent-Maquin D, Balossier G (2008) In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater Charact 59(2):129–133CrossRefGoogle Scholar
  21. 21.
    Dumelié N, Benhayoune H, Rousse-Bertrand C, Bouthors S, Perchet A, Wortham L, Douglade J, Laurent-Maquin D, Balossier G (2005) Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis. Thin Solid Films 492(1–2):131–139CrossRefGoogle Scholar
  22. 22.
    Dumelie N, Benhayoune H, Richard D, Laurent-Maquin D, Balossier G (2008) In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater Charact 59(2):129–133CrossRefGoogle Scholar
  23. 23.
    Qiu DL, Yang LJ, Yin YS, Wang AP (2011) Preparation and characterization of hydroxyapatite/titania composite coating on NiTi alloy by electrochemical deposition. Surf Coat Tech 205(10):3280–3284CrossRefGoogle Scholar
  24. 24.
    Jo CI, Jeong YH, Choe HC, Brantley WA (2013) Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications. Thin Solid Films 549:135–140CrossRefGoogle Scholar
  25. 25.
    Roland T, Pelletier H, Krier J (2013) Scratch resistance and electrochemical corrosion behavior of hydroxyapatite coatings on Ti6Al4V in simulated physiological media. J Appl Electrochem 43(1):53–63CrossRefGoogle Scholar
  26. 26.
    Ahmadi S, Mohammadi I, Sadrnezhaad SK (2016) Hydroxyapatite based and anodic Titania nanotube biocomposite coatings: fabrication, characterization and electrochemical behavior. Surf Coat Tech 287:67–75CrossRefGoogle Scholar
  27. 27.
    Song WH, Jun YK, Han Y, Hong SH (2004) Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 25(17):3341–3349CrossRefPubMedGoogle Scholar
  28. 28.
    Shi XL, Xu LL, Wang QL (2010) Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank’s solution. Surf Coat Tech 205(6):1730–1735CrossRefGoogle Scholar
  29. 29.
    Benea L, Danaila E, Ponthiaux P (2015) Effect of titania anodic formation and hydroxyapatite electrodeposition on electrochemical behaviour of Ti-6A1-4V alloy under fretting conditions for biomedical applications. Corros Sci 91:262–271CrossRefGoogle Scholar
  30. 30.
    Goudarzi M, Batmanghelich F, Afshar A, Dolati A, Mortazavi G (2014) Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature. Appl Surf Sci 301:250–257CrossRefGoogle Scholar
  31. 31.
    Lin JS, Tsai TB, Say WC, Chiu C, Chen SH (2017) In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO2 interlayer. Biomed Mater 12(2):025018CrossRefPubMedGoogle Scholar
  32. 32.
    John AA, Subramanian AP, Vellayappan MV, Balaji A, Jaganathan SK, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M (2015) Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Adv 5(49):39232–39244CrossRefGoogle Scholar
  33. 33.
    Liu GY, Hu J, Ding ZK, Wang C (2011) Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl Surf Sci 257(6):2051–2057CrossRefGoogle Scholar
  34. 34.
    Tang SW, San HS, Zhang YF, Han JP, Hu J (2017) Formation mechanism and corrosion properties of bioactive coating on a micro-arc oxidized Ti6Al4V using xathodic electrodeposition. J Electrochem Soc 164(12):D714–D722CrossRefGoogle Scholar
  35. 35.
    Takadama H, Kim HM, Kokubo T, Nakamura T (2001) TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res 57(3):441–448CrossRefPubMedGoogle Scholar
  36. 36.
    Habibovic P, Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 85(3):517–522CrossRefGoogle Scholar
  37. 37.
    Wang SH, Shih WJ, Li WL, Hon MH, Wang MC (2005) Morphology of calcium phosphate coatings deposited on a Ti-6Al-4V substrate by an electrolytic method under 80 Torr. J Eur Ceram Soc 25(14):3287–3292CrossRefGoogle Scholar
  38. 38.
    Park JH, Lee DY, Oh KT, Lee YK, Kim KM, Kim KN (2006) Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater Lett 60(21–22):2573–2577CrossRefGoogle Scholar
  39. 39.
    Metikos-Hukovic M, Babic R, Grubac Z, Petravic M, Peter R (2013) Potential assisted formation and characterization of hydroxyapatite coatings on biodegradable magnesium alloys. J Electrochem Soc 160(10):H674–H680CrossRefGoogle Scholar
  40. 40.
    Munirathinam B, Neelakantan L (2016) Role of crystallographic texture and crystallinity on the electrochemical behavior of nanocrystalline Sr doped calcium phosphate coatings. J Electrochem Soc 163(7):D336–D343CrossRefGoogle Scholar
  41. 41.
    Yerokhin A, Parfenov EV, Matthews A (2016) In situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing, coatings on Ti. Surf Coat Tech 301:54–62CrossRefGoogle Scholar
  42. 42.
    Chen SL, Liu WL, Huang ZJ, Liu XG, Zhang QY, Lu X (2009) The simulation of the electrochemical cathodic Ca-P deposition process. Mater Sci Eng C 29(1):108–114CrossRefGoogle Scholar
  43. 43.
    Liu GY, Hu J, Ding ZK, Wang C (2011) Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium. Mater Chem Phys 130(3):1118–1124CrossRefGoogle Scholar
  44. 44.
    El-Rabb S, Fadl-allah SA, Montser AA (2012) Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca-P apatite coat on anodized titania. Appl Surf Sci 261:1–7CrossRefGoogle Scholar
  45. 45.
    Benea L, Mardare-Danaila E, Mardare M, Celis J-P (2014) Preparation of titanium oxide and hydroxyapatite on Ti-6Al-4V alloy surface and electrochemical behaviour in bio-simulated fluid solution. Corros Sci 80:331–338CrossRefGoogle Scholar
  46. 46.
    He DH, Liu P, Liu XK, Ma FC, Chen XH, Li W, Du JD, Wang P, Zhao J (2016) Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. J Alloys Compd 672:336–343CrossRefGoogle Scholar
  47. 47.
    Fei C, Hai Z, Chen C, Xia YJ (2009) Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Prog Org Coat 64(2–3):264–267CrossRefGoogle Scholar
  48. 48.
    Shokouhfar M, Dehghanian C, Montazeri M, Baradaran A (2012) Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: part II. Appl Surf Sci 258(7):2416–2423CrossRefGoogle Scholar
  49. 49.
    Zhang YF, Blawert C, Tang SW, Hu J, Mohedano M, Zheludkevich ML, Kainer KU (2016) Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy. Corros Sci 112:483–494CrossRefGoogle Scholar
  50. 50.
    Zhang YF, Tang SW, Hu J, Lin TG (2016) Formation mechanism and corrosion resistance of the hydrophobic coating on anodized magnesium. Corros Sci 111:334–343CrossRefGoogle Scholar
  51. 51.
    Drevet R, Lemelle A, Untereiner V, Manfait M, Sockalingum GD, Benhayoune H (2013) Morphological modifications of electrodeposited calcium phosphate coatings under amino acids effect. Appl Surf Sci 268:343–348CrossRefGoogle Scholar
  52. 52.
    Drevet R, Aaboubi O, Benhayoune H (2012) In vitro corrosion behavior of electrodeposited calcium phosphate coatings on Ti6Al4V substrates. J Solid State Electr 16(9):3069–3077CrossRefGoogle Scholar
  53. 53.
    Buyuksagis A, Bulut E, Kayali Y (2013) Corrosion behaviors of hydroxyapatite coated by electrodeposition method of Ti6Al4V, Ti and AISI 316L SS substrates. Prot Met Phys Chem Surf 49(6):776–787CrossRefGoogle Scholar
  54. 54.
    Chen LL, Gu YH, Chen F, Yue W, Wang HD, Zhang L (2016) Influence of HA in the electrolyte on the properties and corrosion behavior of MAO Ca/P coating. Mater Corros 67(7):702–709CrossRefGoogle Scholar
  55. 55.
    Dinh TMT, Nguyen TT, Pham TN, Nguyen TP, Nguyen TTT, Hoang T, Grossin D, Bertrand G, Drouet C (2016) Electrodeposition of HAp coatings on Ti6Al4V alloy and its electrochemical behavior in simulated body fluid solution. Adv Nat Sci-Nanosci 7(2):8Google Scholar
  56. 56.
    Farnoush H, Mohandesi JA, Cimenoglu H (2015) Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. J Mech Behav Biomed 46:31–40CrossRefGoogle Scholar
  57. 57.
    Liu B, Zhang X, Xiao GY, Lu YP (2015) Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review. Mater Sci Eng C 47:97–104CrossRefGoogle Scholar
  58. 58.
    Buyuksagis A (2016) Electrochemical corrosion of Ti6Al4V, Ti and AISI 316L SS after immersed in concentrated simulated body fluid. Prot Met Phys Chem 52(4):695–703CrossRefGoogle Scholar
  59. 59.
    Xu J, Hu W, Xu S, Munroe P, Xie Z-H (2016) Electrochemical properties of a novel beta-Ta2O5 nanoceramic coating exposed to simulated body solutions. ACS Biomater Sci Eng 2(1):73–89CrossRefGoogle Scholar
  60. 60.
    Yang H, Xia K, Wang T, Niu J, Song Y, Xiong Z, Zheng K, Wei S, Lu W (2016) Growth, in vitro biodegradation and cytocompatibility properties of nano- hydroxyapatite coatings on biodegradable magnesium alloys. J Alloys Compd 672:366–373CrossRefGoogle Scholar
  61. 61.
    Li B, Chen Y, Huang W, Yang W, Yin X, Liu Y (2016) Enhanced corrosion resistance of hydroxyapatite/magnesium-phosphate-composite-coated AZ31 alloy co-deposited by electrodeposition method. Ceram Int 42(11):13074–13085CrossRefGoogle Scholar
  62. 62.
    Su Y, Niu L, Lu Y, Lian J, Li G (2013) Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. J Electrochem Soc 160(11):C536–C541CrossRefGoogle Scholar
  63. 63.
    Anawati A, Tanigawa H, Asoh H, Ohno T, Kubota M, Ono S (2013) Electrochemical corrosion and bioactivity of titanium-hydroxyapatite composites prepared by spark plasma sintering. Corros Sci 70:212–220CrossRefGoogle Scholar
  64. 64.
    Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomimetic apatite formation on chemically treated titanium. Biomaterials 25(7–8):1187–1194CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.National Key Laboratory for Precision Hot Processing of MetalsHarbin Institute of TechnologyHarbinChina
  3. 3.College of EngineeringShanxi Agricultural UniversityTaiyuanChina

Personalised recommendations