Skip to main content

Advertisement

Log in

Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This article reports the use of crystalline nickel phosphate/carbon fibres (NiPh/CFs) nanocomposite as an electrode material for pseudocapacitor applications. The NiPh particles are synthesised by a cost-effective one-pot method, which is based on refluxing nickel and phosphate precursors at 90 °C. The crystallinity and structural morphologies of the synthesised particles are characterised by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). Also, the N2 adsorption/desorption isotherms are recorded. The Brunauer–Emmett–Teller (BET) method is used to calculate the specific surface area. The electrochemical performances of pristine NiPh and NiPh/CFs composite electrodes are investigated in an alkaline solution of 0.5 M of KOH. The specific capacitances were calculated using cyclic voltammograms at a potential scan rate of 100 mV s− 1. For the pristine electrode, the calculated specific capacitance was 4.3 F g− 1 and for the composite NiPh/CFs electrode, it was 699.2 F g− 1. The significant improvement in the performance is attributed to the high surface area and enhanced electronic conductivity of the NiPh/CFs composite electrode. Also, the composite electrode shows outstanding stability and delivers 1000 cycles with excellent capacitance retention.

Graphical abstract

A cost-effective material for high-performance pseudocapacitors: Crystalline NiPh nanoparticles have been synthesised at 90 °C. SEM image shows the pseudocapacitors composite electrode fabricated by mixing the NiPh with CFs. The electrode delivers a specific capacitance of 699.2 F g−1; calculated from the cyclic voltammogram shown in the figure. Also, the composite electrode shows good stability and provides 1000 cycles with excellent capacitance retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vatamanu J, Bedrov D (2015) Capacitive energy storage: current and future challenges. J Phys Chem Lett 6:3594–3609

    Article  CAS  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  PubMed  Google Scholar 

  3. Liang K, Li L, Yang Y (2017) Inorganic porous films for renewable energy storage. ACS Energy Lett 2:373–390

    Article  CAS  Google Scholar 

  4. Wen Z, Yeh M-H, Guo H et al (2016) Self-powered textile for wearable electronics by hybridizing fibre-shaped Nanogenerators, solar cells, and supercapacitors. Sci Adv 2:1–8

    Google Scholar 

  5. Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  6. Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  7. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, Berlin

    Book  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  9. Béguin F, Frąckowiak E (2013) Supercapacitors: materials, systems, and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Yu A, Chabot V, Zhang J (2017) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications

  11. Li P, Li J, Zhao Z et al (2017) A General electrode design strategy for flexible fiber micro-pseudocapacitors combining ultrahigh energy and power delivery. Adv Sci 4:1700003

    Article  CAS  Google Scholar 

  12. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  13. Costentin C, Porter TR, Savéant J-M (2017) How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl Mater Interfaces 9:8649–8658

    Article  CAS  PubMed  Google Scholar 

  14. Eftekhari A, Mohamedi M (2017) Tailoring pseudocapacitive materials from a mechanistic perspective. Mater Today Energy 6:211–229

    Article  Google Scholar 

  15. Yang B-J, Jiang L-L, Li Y-J et al (2018) Three-dimensional porous biocarbon wrapped by graphene and polypyrrole composite as electrode materials for supercapacitor. J Mater Sci Mater Electron 29:2568–2572

    Article  CAS  Google Scholar 

  16. Shumakovich GP, Morozova OV, Khlupova ME et al (2017) Enhanced performance of a flexible supercapacitor due to a combination of the pseudocapacitances of both a PANI/MWCNT composite electrode and a gel polymer redox electrolyte. RSC Adv 7:34192–34196

    Article  CAS  Google Scholar 

  17. Khdary NH, Abdesalam ME, Enany G El (2014) Mesoporous polyaniline films for high performance supercapacitors. J Electrochem Soc 161:63–68

    Article  CAS  Google Scholar 

  18. Nejati S, Minford TE, Smolin YY, Lau KKS (2014) Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8:5413–5422

    Article  CAS  PubMed  Google Scholar 

  19. Bryan AM, Santino LM, Lu Y et al (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28:5989–5998

    Article  CAS  Google Scholar 

  20. Peng Z, Liu X, Meng H et al (2017) Design and tailoring of the 3D macroporous hydrous RuO 2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl Mater Interfaces 9:4577–4586

    Article  CAS  PubMed  Google Scholar 

  21. Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO Nanoparticles anchored on carbon nano-onions: an Efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng 4:2528–2534

    Article  CAS  Google Scholar 

  22. Zeng Z, Liu Y, Zhang W et al (2017) Improved supercapacitor performance of MnO 2 -electrospun carbon nanofibers electrodes by magnetic field. J Power Sources 358:22–28

    Article  CAS  Google Scholar 

  23. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Guo S, Lee I et al (2014) Hydrous ruthenium oxide nnanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Springer, New York

    Google Scholar 

  26. Lee HY, Goodenough JB (1999) Brief communication: supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  27. Kore RM, Mane RS, Naushad M et al (2016) Nanomorphology-dependent pseudocapacitive properties of NiO electrodes engineered through a controlled potentiodynamic electrodeposition process. RSC Adv 6:24478–24483

    Article  CAS  Google Scholar 

  28. Behm N, Brokaw D, Overson C et al (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716

    Article  CAS  Google Scholar 

  29. Salunkhe RR, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  CAS  Google Scholar 

  30. Zhang Y, Shi Z, Liu L et al (2017) High conductive architecture: bimetal oxide with metallic properties at bimetal hydroxide for high-performance pseudocapacitor. Electrochim Acta 231:487–494

    Article  CAS  Google Scholar 

  31. Zhu T, Wang Z, Ding S et al (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv 1:397–400

    Article  CAS  Google Scholar 

  32. Raju K, Ozoemena KI (2015) Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci Rep 5:17629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jhung SH, Lee J-H, Cheetham AK et al (2006) A shape-selective catalyst for epoxidation of cyclic olefins: the nanoporous nickel phosphate VSB-5. J Catal 239:97–104

    Article  CAS  Google Scholar 

  34. Yang J, Tan J, Yang F et al (2012) Electro-oxidation of methanol on mesoporous nickel phosphate modified GCE. Electrochem commun 23:13–16

    Article  CAS  Google Scholar 

  35. Zhan Y, Lu M, Yang S et al (2016) Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution. ChemCatChem 8:372–379

    Article  CAS  Google Scholar 

  36. Omar FS, Numan A, Duraisamy N et al (2016) Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv 6:76298–76306

    Article  CAS  Google Scholar 

  37. Yang J-H, Tan J, Ma D (2014) Nickel phosphate molecular sieve as electrochemical capacitors material. J Power Sources 260:169–173

    Article  CAS  Google Scholar 

  38. Al-Omair MA, Touny AH, Saleh MM (2017) Reflux-based synthesis and electrocatalytic characteristics of nickel phosphate nanoparticles. J Power Sources 342:1032–1039

    Article  CAS  Google Scholar 

  39. Al-Omair MA, Touny AH, Al-Odail FA, Saleh MM (2017) Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electroanalysis 8:340–350

    CAS  Google Scholar 

  40. García A, Nieto A, Vila M, Vallet-Regí M (2013) Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method. Carbon 51:410–418

    Article  CAS  Google Scholar 

  41. Cychosz KA, Guillet-Nicolas R, Garcıa-Martınez J, Thommes M (2017) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Chem Soc Rev 46:389–414

    Article  CAS  PubMed  Google Scholar 

  42. Kong L, Chen W (2016) Ionic liquid directed mesoporous carbon nanoflakes as an effiencient electrode material. Sci Rep 5:18236

    Article  CAS  Google Scholar 

  43. Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR (2015) Synthesis of mesoporous NiCo2O4–GO by a solvothermal method for charge storage applications. RSC Adv 5:66657–66666

    Article  CAS  Google Scholar 

  44. Tammam H, Touny AH, Abdelsalam M, Saleh MM (2018) Mesoporous NiPh/ carbon fibers nanocomposite for enhanced electrocatalytic oxidation of ethanol. J Electroanal Chem 823:128–136

    Article  CAS  Google Scholar 

  45. Zhan Y, Lu M, Yang S et al (2016) The Origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by Iron substitution. ChemElectroChem 3:615–621

    Article  CAS  Google Scholar 

  46. Duraisamy N, Numan A, Ramesh K et al (2015) Investigation on structural and electrochemical properties of binder free nanostructured nickel oxide thin film. Mater Lett 161:694–697

    Article  CAS  Google Scholar 

  47. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at King Faisal University for the financial support (Project Number 186061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mamdouh E. Abdelsalam or M. M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, M.E., Elghamry, I., Touny, A.H. et al. Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors. J Appl Electrochem 49, 45–55 (2019). https://doi.org/10.1007/s10800-018-1279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1279-y

Keywords

Navigation