Improved accessibility of porous carbon electrodes with surfactant ionic liquids for supercapacitors

Abstract

Ionic liquids (ILs) are promising electrolytes for supercapacitors due to their wide electrochemical window. However, most ILs are viscous in nature and require diffusional and rotational transformations to access the pore space of common supercapacitor electrodes. In this study, novel anionic surfactant ILs (ASILs) are synthesized to lubricate the electrode surface to improve pore accessibility by IL ions. ASIL composition (0–10 wt%) and temperature (22–150 °C)-dependent capacitances, as a measure of pore accessibility and wettability, are determined by cyclic voltammetry. 10 wt% 1-butyl-1-methylpyrrolidinium docusate, [PYR14][AOT], in the base IL 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [PYR13][TFSI], exhibits the highest specific capacitance (202 F g−1 at 150 °C and 10 mV s−1), compared to [PYR13][TFSI] (160 F g−1). Electrochemical impedance spectroscopy measurements indicate resistive charging for ASIL/IL electrolyte compared to the base IL at 22 °C due to reduced conductivity—a consequence of larger non-polar domains. However, at elevated temperatures (> 100 °C), electrolyte resistance is circumvented as the viscosity is reduced. The wide voltage window of ILs and improved wettability by ASILs can be coupled to maximize energy storage capability of supercapacitors for high-temperature power applications.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Khare V, Nema S, Baredar P (2016) Solar-wind hybrid renewable energy system: a review. Renew Sustain Energy Rev 58:23–33

    Article  Google Scholar 

  2. 2.

    Beaudin M, Zareipour H, Schellenberg A, Rosehart W (2014) Energy storage for mitigating the variability of renewable electricity sources. Energy Storage Smart Grids: Plan Oper Renew Var Energy Resour (VERs) 14:1–33. https://doi.org/10.1016/B978-0-12-410491-4.00001-4

    Article  Google Scholar 

  3. 3.

    Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335

    Article  CAS  Google Scholar 

  4. 4.

    Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ionbatteries for power-assist applications in hybrid electric vehicles I.Initial characterization. J Power Sources 112:236–246

    Article  CAS  Google Scholar 

  5. 5.

    Balo L, Shalu, Gupta H, Singh VK, Singh RK (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131

    Article  CAS  Google Scholar 

  6. 6.

    Choi NS et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  7. 7.

    Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912

    Article  CAS  Google Scholar 

  8. 8.

    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  9. 9.

    Lin Z, Taberna PL, Simon P (2016) Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte. Electrochim Acta 206:446–451

    Article  CAS  Google Scholar 

  10. 10.

    Anothumakkool B, Torris ATA, Bhange SN, Badiger MV, Kurungot S (2014) Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart. Nanoscale 6:5944

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Lockett V, Sedev R, Ralston J, Horne M, Rodopoulos T (2008) Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: influence of potential, cation size, and temperature. J Phys Chem C 112:7486–7495

    Article  CAS  Google Scholar 

  13. 13.

    Balducci A et al (2005) Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid as electrolyte. Electrochim Acta 50:2233–2237

    Article  CAS  Google Scholar 

  14. 14.

    Arbizzani C, Beninati S, Lazzari M, Soavi F, Mastragostino M (2007) Electrode materials for ionic liquid-based supercapacitors. J Power Sources 174:648–652

    Article  CAS  Google Scholar 

  15. 15.

    Kurig H, Vestli M, Tonurist K, Janes A, Lust E (2012) Influence of room temperature ionic liquid anion chemical composition and electrical charge delocalization on the supercapacitor properties. J Electrochem Soc 159:A944–A951

    Article  CAS  Google Scholar 

  16. 16.

    Timperman L, Vigeant A, Anouti M (2015) Eutectic mixture of protic ionic liquids as an electrolyte for activated carbon-based supercapacitors. Electrochim Acta 155:164–173

    Article  CAS  Google Scholar 

  17. 17.

    Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Ionic liquids for hybrid supercapacitors. Electrochem commun 6:566–570

    Article  CAS  Google Scholar 

  18. 18.

    Balducci A et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  19. 19.

    Ruiz V, Huynh T, Sivakkumar SR, Pandolfo AG (2012) Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation. RSC Adv 2:5591

    Article  CAS  Google Scholar 

  20. 20.

    Newell R, Faure-Vincent J, Iliev B, Schubert T, Aradilla D (2018) A new high performance ionic liquid mixture electrolyte for large temperature range supercapacitor applications (– 70 °C to 80 °C) operating at 3.5V cell voltage. Electrochim Acta 267:15–19

    Article  CAS  Google Scholar 

  21. 21.

    Tsai WY et al (2013) Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from – 50 to 80 °C. Nano Energy 2:403–411

    Article  CAS  Google Scholar 

  22. 22.

    Lin R et al (2011) Capacitive energy storage from – 50 to 100 C using an ionic liquid electrolyte. J Phys Chem Lett 2:2396–2401

    Article  CAS  Google Scholar 

  23. 23.

    Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111:5545–5557

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kowsari E (2015) High-performance supercapacitors based on ionic liquids and a graphene nanostructure. In: Handy S (ed) Ionic liquids—current state of the art. Intech, Rijeka, pp. 505–542. https://doi.org/10.5772/59201

    Google Scholar 

  26. 26.

    Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565

    Article  CAS  Google Scholar 

  27. 27.

    Signorelli R, Ku DC, Kassakian JG, Schindall JE (2009) Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc IEEE 97:1837–1847 (2009)

    Article  CAS  Google Scholar 

  28. 28.

    Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11:10628–10643

    Article  CAS  Google Scholar 

  29. 29.

    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  30. 30.

    Leyva-Garcia S et al (2016) Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. J Power Sources 336:419–426

    Article  CAS  Google Scholar 

  31. 31.

    Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603–3611

    Article  CAS  Google Scholar 

  32. 32.

    Brown P et al (2012) Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: characterization and application. Langmuir 28:2502–2509

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Adamson AW, Gast AP (eds) (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

    Google Scholar 

  34. 34.

    Gurkan B, Simeon F, Hatton TA (2015) Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustain Chem Eng 3:1394–1405

    Article  CAS  Google Scholar 

  35. 35.

    Barrosse-Antle LE et al (2010) Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents. Chem ASIAN J 5:202–230

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Torriero AAJ (2014) Characterization of decamethylferrocene and ferrocene in ionic liquids:argon and vacuum effect on their electrochemical properties. Electrochim Acta 137:235–244

    Article  CAS  Google Scholar 

  37. 37.

    Li P, Barnes EO, Hardacre C, Compton RG (2015) Microelectrode voltammetry of dioxygen reduction in a phosphonium cation-based room-temperature ionic liquid: quantitative studies. J Phys Chem C 119:2716–2726

    Article  CAS  Google Scholar 

  38. 38.

    Barisci JN, Wallace GG, MacFarlane DR, Baughman RH (2004) Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem Commun 6:22–27

    Article  CAS  Google Scholar 

  39. 39.

    Peng C, Yang L, Zhang Z, Tachibana K, Yang Y (2007) Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes. J Power Sources 173:510–517

    Article  CAS  Google Scholar 

  40. 40.

    Kuehnel R-S, Luebke M, Winter M, Passerini S, Balducci A (2012) Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources 214:178–184

    Article  CAS  Google Scholar 

  41. 41.

    Kurig H, Vestli M, Tõnurist K, Jänes A, Lust E (2012) Influence of room temperature ionic liquid anion chemical composition and electrical charge delocalization on the supercapacitor properties. J Electrochem Soc 159:A944–A951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Case Western Reserve University Capacitor Facility, specifically Dr John Miller, Mirko Antloga, and Becca Segeel for supplying the electrodes.

Author information

Affiliations

Authors

Contributions

NX synthesized ASILs and performed the physical property and electrochemical measurements. JMK carried out the EIS fit and analysis. PH performed TGA and DSC measurements. HA measured surface tension. EM supervised surface tension measurements. BEG designed the experiments and supervised all activities. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Burcu E. Gurkan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Klein, J.M., Huang, P. et al. Improved accessibility of porous carbon electrodes with surfactant ionic liquids for supercapacitors. J Appl Electrochem 49, 151–162 (2019). https://doi.org/10.1007/s10800-018-1266-3

Download citation

Keywords

  • Anionic surfactant ionic liquid
  • Ion accessibility
  • Electrode wettability
  • Capacitance
  • Impedance