Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 11, pp 1265–1271 | Cite as

A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries

  • Toshinari Koketsu
  • Chao Wu
  • Yunhui Huang
  • Peter StrasserEmail author
Research Article

Abstract

We report a new class of high-capacity chalcogen–carbon composite negative electrodes for Na rechargeable batteries, consisting of tellurium-infiltrated ordered mesoporous carbon CMK-3. Its unparalleled electric conductivity makes Te a promising electrode material with high-capacity utilization. The rechargeable cell Na/Te@CMK-3, using a carbonate-based electrolyte, exhibited a large stable capacity of ~ 320 mA h (g-Te)−1 at 0.2 C with an excellent rate capability (55% of the theoretical specific capacity at 2 C-rate), and long-term cyclability (> 500 cycles), as well as 100% coulombic efficiency. Our study evidences the great potential of mesoporous carbon-encapsulated Te materials concepts as a new class of high-performance chalcogen-based electrode materials for Na rechargeable batteries.

Graphical abstract

Keywords

Tellurium Chalcogen CMK-3 mesoporous carbon Na-ion battery negative electrode 

Notes

Acknowledgements

We thank Benjamin Paul for help with SEM. Partial financial support from the Federal Ministry of Education and Research through funding within the “Sino German TU9 network for electromobility” under the grant reference number 16N11929 is gratefully acknowledged.

Supplementary material

10800_2018_1249_MOESM1_ESM.docx (916 kb)
Supplementary material 1 (DOCX 915 KB)

References

  1. 1.
    Kularatna N (2014) Energy storage devices for electronic systems: rechargeable batteries and supercapacitors. Elsevier Science, New YorkGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935.  https://doi.org/10.1126/science.1212741 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gröger O, Gasteiger HA, Suchsland J-P (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162(14):A2605–A2622.  https://doi.org/10.1149/2.0211514jes CrossRefGoogle Scholar
  4. 4.
    Kushnir D, Sandén BA (2012) The time dimension and lithium resource constraints for electric vehicles. Resour Policy 37(1):93–103.  https://doi.org/10.1016/j.resourpol.2011.11.003 CrossRefGoogle Scholar
  5. 5.
    Kim SW, Seo DH, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721.  https://doi.org/10.1002/aenm.201200026 CrossRefGoogle Scholar
  6. 6.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefPubMedGoogle Scholar
  7. 7.
    Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16(4):168–177.  https://doi.org/10.1016/j.cossms.2012.04.002 CrossRefGoogle Scholar
  8. 8.
    Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27(36):5343–5364.  https://doi.org/10.1002/adma.201501527 CrossRefPubMedGoogle Scholar
  9. 9.
    Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358.  https://doi.org/10.1038/ncomms5358 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16(29):15007–15028.  https://doi.org/10.1039/c4cp00826j CrossRefPubMedGoogle Scholar
  11. 11.
    Doeff MM (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140(12):L169.  https://doi.org/10.1149/1.2221153 CrossRefGoogle Scholar
  12. 12.
    Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21(20):3859–3867.  https://doi.org/10.1002/adfm.201100854 CrossRefGoogle Scholar
  13. 13.
    Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu YC, Li H, Li Y, Lu J, Amine K (2015) Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 7(9):5598–5604.  https://doi.org/10.1021/acsami.5b00861 CrossRefPubMedGoogle Scholar
  14. 14.
    Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 3(11):4165–4168.  https://doi.org/10.1021/am200973k CrossRefPubMedGoogle Scholar
  15. 15.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29.  https://doi.org/10.1038/nmat3191 CrossRefGoogle Scholar
  16. 16.
    Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032.  https://doi.org/10.1039/C2CS35256G CrossRefPubMedGoogle Scholar
  17. 17.
    Wang C, Wan W, Chen J-T, Zhou H-H, Zhang X-X, Yuan L-X, Huang Y-H (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1(5):1716–1723.  https://doi.org/10.1039/C2TA00915C CrossRefGoogle Scholar
  18. 18.
    Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer LA (2016) A stable room-temperature sodium-sulfur battery. Nat Commun 7:11722.  https://doi.org/10.1038/ncomms11722 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xin S, Yin YX, Guo YG, Wan LJ (2014) A high-energy room-temperature sodium-sulfur battery. Adv Mater 26(8):1261–1265.  https://doi.org/10.1002/adma.201304126 CrossRefPubMedGoogle Scholar
  20. 20.
    Wu C, Yuan L, Li Z, Yi Z, Li Y, Zeng R, Zhang W, Huang Y (2015) Novel double-cathode configuration to improve the cycling stability of lithium-sulfur battery. RSC Adv 5(19):14196–14201.  https://doi.org/10.1039/C4RA15328F CrossRefGoogle Scholar
  21. 21.
    Manthiram A, Fu Y, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134.  https://doi.org/10.1021/ar300179v CrossRefPubMedGoogle Scholar
  22. 22.
    Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K (2012) A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 134(10):4505–4508.  https://doi.org/10.1021/ja211766q CrossRefPubMedGoogle Scholar
  23. 23.
    Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C (2013) Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS nano 7(9):8003–8010.  https://doi.org/10.1021/nn403108w CrossRefPubMedGoogle Scholar
  24. 24.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Koketsu T, Paul B, Wu C, Kraehnert R, Huang Y, Strasser P (2016) A lithium–tellurium rechargeable battery with exceptional cycling stability. J Appl Electrochem 46(6):627–633.  https://doi.org/10.1007/s10800-016-0959-8 CrossRefGoogle Scholar
  26. 26.
    Seo JU, Seong GK, Park CM (2015) Te/C nanocomposites for Li-Te secondary batteries. Sci Rep 5:7969.  https://doi.org/10.1038/srep07969 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ding N, Chen S-F, Geng D-S, Chien S-W, An T, Hor TSA, Liu Z-L, Yu S-H, Zong Y (2015) Tellurium@ ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energy Mater 5(8):1401999.  https://doi.org/10.1002/aenm.201401999 CrossRefGoogle Scholar
  28. 28.
    Zhang J, Yin YX, You Y, Yan Y, Guo YG (2014) A High-capacity tellurium@ carbon anode material for lithium-ion batteries. Energy Technol 2(9–10):757–762.  https://doi.org/10.1002/ente.201402069 CrossRefGoogle Scholar
  29. 29.
    Zhang J, Yin YX, Guo YG (2015) High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries. ACS Appl Mater Interfaces 7(50):27838–27844.  https://doi.org/10.1021/acsami.5b09181 CrossRefPubMedGoogle Scholar
  30. 30.
    Yu CZ, Fan J, Tian BZ, Zhao DY (2004) Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater 16(5):889–898.  https://doi.org/10.1021/cm035011g CrossRefGoogle Scholar
  31. 31.
    Zhou HS, Zhu SM, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15(24):2107.  https://doi.org/10.1002/adma.200306125 CrossRefGoogle Scholar
  32. 32.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843):169–172.  https://doi.org/10.1038/35084046 CrossRefPubMedGoogle Scholar
  33. 33.
    Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG (2013) An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed 52(32):8363–8367.  https://doi.org/10.1002/anie.201303147 CrossRefGoogle Scholar
  34. 34.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052):75–79.  https://doi.org/10.1126/science.1209150 CrossRefPubMedGoogle Scholar
  35. 35.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506.  https://doi.org/10.1038/NMAT2460 CrossRefPubMedGoogle Scholar
  36. 36.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713.  https://doi.org/10.1021/Ja002261e CrossRefGoogle Scholar
  37. 37.
    Adenis C, Langer V, Lindqvist O (1989) Reinvestigation of the structure of tellurium. Acta Crystallogr C 45(6):941–942.  https://doi.org/10.1107/s0108270188014453 CrossRefGoogle Scholar
  38. 38.
    Qu Q, Yun J, Wan Z, Zheng H, Gao T, Shen M, Shao J, Zheng H (2014) MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Adv 4(110):64692–64697.  https://doi.org/10.1039/c4ra11009a CrossRefGoogle Scholar
  39. 39.
    Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2(7):873–877.  https://doi.org/10.1002/aenm.201100691 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of ChemistryTechnical University BerlinBerlinGermany
  2. 2.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations