Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 11, pp 1255–1264 | Cite as

A five-fold efficiency enhancement in dye sensitized solar cells fabricated with AlCl3 treated, SnO2 nanoparticle/nanofibre/nanoparticle triple layered photoanode

  • G. K. R. Senadeera
  • A. M. J. S. Weerasinghe
  • M. A. K. L. DissanayakeEmail author
  • C. A. Thotawatthage
Research Article
  • 154 Downloads
Part of the following topical collections:
  1. Solar Cells

Abstract

The use of electrospun nanofibre (NF) membrane of SnO2 toward the efficiency enhancement in dye sensitized solar cells (DSSCs) with a triple layered, AlCl3 treated SnO2-based photoanode is presented. The performance of DSSCs fabricated with SnO2 nanoparticle (NP)-based photoanode is compared with that of DSSCs made with a novel triple layered SnO2 photoanode of configuration FTO/NP/NF/NP. Thickness of the NF membrane is optimized to achieve the highest solar cell performance. Solar cells made with single layer SnO2 NP photoanode sensitized either by Eosin-Y dye or Indoline dye showed efficiencies of 0.3% and 2.02%, respectively, under the irradiance of 100 mW cm−2 (AM 1.5), while the corresponding devices with AlCl3-treated, triple layered photoanode showed efficiencies of 1.55 and 2.77%, respectively, under the same illumination. Accordingly, more than five-fold enhancement in overall efficiency is achieved in DSSCs by using this novel SnO2-based photoanode with the optimized thickness of the SnO2 nanofibre membrane and sensitized with Eosin-Y dye. Scanning electron microscopic studies revealed that the SnO2 nanofibre membrane consists of an interconnected network-like structure formed by the SnO2 nanofibres. Electrochemical impedance spectroscopy measurements on DSSCs made with these two types of photoanodes reveals that the series resistance of the DSSC made with the novel NP/NF/NP triple layered photoanode is significantly reduced. The observed higher electron lifetime determined from Bode plots shows that electron recombination is lower in the DSSCs made with the triple layered photoanode. Improved light harvesting by multiple scattering effects within the triple layered photoanode structure and the suppression of the electron recombination by Al2O3 sub-nanometer-sized coating around SnO2 appear to be the major factors for the enhancement in photo current density and efficiency.

Graphicasl Abstract

Keywords

Electro-spun SnO2 nano nanofibres Triple-layered photoanode Dye-sensitized solar cells Eosin-Y Indoline AlCl3 treatment 

References

  1. 1.
    Oregan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2000) Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovoltaics Res Appl 8:171–185CrossRefGoogle Scholar
  3. 3.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R,. Wang P, Zakeeruddin SM, Grätzel SM M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized Solar cells. J Am Chem Soc 130:10720–10728CrossRefGoogle Scholar
  4. 4.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MDK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6:242–247CrossRefGoogle Scholar
  5. 5.
    Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline 2 dye-sensitized solar cells. J Photochem Photobiol A 164:3–14CrossRefGoogle Scholar
  6. 6.
    Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRefGoogle Scholar
  7. 7.
    Wu SL, Lu HP, Yu HT, Chuang SH, Chiu CL, Lee CW, Diau EW, Yeh CY (2010) Design and characterization of porphyrin sensitizers with a push–pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3:949–955CrossRefGoogle Scholar
  8. 8.
    Senadeera GKR, Kobayashi S, Kitamura T, Wada YS, Yanagida S (2005) Versatile preparation method for mesoporous TiO2 electrodes suitable for solid-state dye sensitized photocells. Bull Mater Sci 28(6):635–641CrossRefGoogle Scholar
  9. 9.
    Maheswari D, Sreenivasan D (2015) Review of TiO2 nanowires in dye sensitized solar cells. Appl Sol Energy 51:112–116CrossRefGoogle Scholar
  10. 10.
    Hailiang L, Qingjiang Y, Huang Y, Yu C, Li RZ, Wang J, Guo F, Zhang Y, Zhang X, Wang P, Zhao L (2016) Ultra-long rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 8(21):13384–13391CrossRefGoogle Scholar
  11. 11.
    Li J, Chen X, Ai N, Hao J, Chen Q, Strauf S, Shi Y (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514:141–145CrossRefGoogle Scholar
  12. 12.
    Leung YL (2011) Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv Mater 23:4559–4562CrossRefGoogle Scholar
  13. 13.
    Jung WH, Kwak NS, Hwang TS, Yi KB (2012) Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl Surf Sci 261:343–352CrossRefGoogle Scholar
  14. 14.
    Nair AS, Shengyuan Y, Peining Z, Ramakrishna S (2010) Rice grain-shaped TiO2 mesostructures by electrospinning for dye sensitized solar cells. Chem Commun 46:7421–7423CrossRefGoogle Scholar
  15. 15.
    Dissanayake MAKL, Divarathna HKDWMN, Dissanayake CB, Senadeera GKR, Ekanayake PMPC, Thotawattage CA (2016) An innovative TiO2 nanoparticle/ nanofiber/ nanoparticle, three layer composite photoanode for efficiency enhancement in dye-sensitized solar cells. J Photochem Photobiol A 322–323:110–118CrossRefGoogle Scholar
  16. 16.
    Roy P, Albu SP, Schmuki P (2010) TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochem Commun 12:7:949–951CrossRefGoogle Scholar
  17. 17.
    Kim GS, Seo HK, Godble V, Kim YS, Yang OB, Shin HS (2006) Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Commun 8:961–966CrossRefGoogle Scholar
  18. 18.
    Kathirvel S, Su C, Shiao YJ, Lin YF, Chen BR, Li WR (2016) Solvothermal synthesis of TiO2 nanorods to enhance photovoltaic performance of dye-sensitized solar cells. Sol Energy 132:310–320CrossRefGoogle Scholar
  19. 19.
    Jeng MJ, Wung YL, Chang LB, Chow L, (20130, Dye-sensitized solar cells with anatase TiO2 nanorods prepared by hydrothermal method. Int J Photoenergy.  https://doi.org/10.1155/2013/280253 Google Scholar
  20. 20.
    Liu X, Fang J, Liu Y, Lin T (2016) Progress in nanostructured photoanodes for dye-sensitized solar cells. Front Mater Sci 10(3):225–237CrossRefGoogle Scholar
  21. 21.
    Birkel A, Lee YG, Koll D, Meerbeek XV, Frank SF, Choi MJ, Kang YS, Char K, Tremel W (2012) Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci 5:5392–5396CrossRefGoogle Scholar
  22. 22.
    Soumen Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255CrossRefGoogle Scholar
  23. 23.
    Pan S, Li G (2011) Recent progress in p-type doping and optical properties of SNO2 nanostructures for optoelectronic device applications. Recent Pat Nanotechnol 5:138–161CrossRefGoogle Scholar
  24. 24.
    Tennakone K, Kumara GRA, Kottegoda IRM, Perera VPS (1999) An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem Commun 1:15–16CrossRefGoogle Scholar
  25. 25.
    Perera VPS, Senadeera GKR, Tennakone K (2003) Sensitization of aluminum chloride adsorbed tin (IV) oxide nanocrystalline films with Rose Bengal. J Colloid Interface Sci 265(2):15, 428–431CrossRefGoogle Scholar
  26. 26.
    Tennakone K, Bandara J, Bandaranayake PKM, Kumara GRRA, Konno K, Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2, Jpn J Appl Phys 40: 2, 7B, L732-734CrossRefGoogle Scholar
  27. 27.
    Snaith HJ, Ducati C (2010) SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett 10:1259–1265CrossRefGoogle Scholar
  28. 28.
    Arote S, Prasadad MBR, Tabhane V, Pathan H (2015) Influence of geometrical thickness of SnO2 based photoanode on the performance of Eosin-Y dye sensitized solar cell. Opt Mater 49:213–217CrossRefGoogle Scholar
  29. 29.
    Gao C, Li X, Lu B, Chen L, Wang Y, Teng F, Wang J, Zhang Z, Pan X, Xie EA (2012) facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale 7(11):3475–3481CrossRefGoogle Scholar
  30. 30.
    Yi-YuBu I (2017) Light harvesting, self-assembled SnO2 nanoflakes for dye sensitized solar cell applications. Optik 147:39–42CrossRefGoogle Scholar
  31. 31.
    Kasaudhan R, Elbohy H, Sigdel S, Qiao H, Wei Q, Qiao Q (2014) Incorporation of TiO2 nanoparticles into SnO2 nanofibers for higher efficiency dye-sensitized solar cells. IEEE Electron Device Lett 35(5):578–580, May 2014CrossRefGoogle Scholar
  32. 32.
    Gao C, Li X, Lu B, Chen L, Wang Y, Teng F, Wang J, Zhang Z, Xiaojun P, Xie E (2012) A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale 4(11):3475–3481CrossRefGoogle Scholar
  33. 33.
    Kim HW, Shim SH (2006) Study of ZnO-coated SnO2 nanostructures synthesized by a two-step process. Appl Surf Sci 253:510–514CrossRefGoogle Scholar
  34. 34.
    Chappel S, Chen SG, Zaban A (2002) TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 18(8):3336–3342CrossRefGoogle Scholar
  35. 35.
    Wang YF, Li KN, Wu WQ, Fan Xu YF, Chen HY, Su CY, Kuang DB (2013) Fabrication of double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye-sensitized solar cells RES advances 3(33):13804–13811Google Scholar
  36. 36.
    Song W, Gong Y, Tian J, Cao G, Zhao H, Sun C (2016) A novel photoanode for dye-sensitized solar cells with enhanced light harvesting and electron collection efficiency. Appl Mater Interfaces 8(21):13418–13425CrossRefGoogle Scholar
  37. 37.
    Dissanayake MAKL, Sarangika HNM, Senadeera GKR, Divarathna HKDWMNR, Ekanayake EMPC (2017) Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye- sensitized solar cells. J Appl Electrochem 47:11,1239–1249CrossRefGoogle Scholar
  38. 38.
    Dissanayake MAKL, Jaseetharan T, Seenadeera GKR, Thotawatthage CA (2018) A novel, PbS:Hg quantum dot-sensitized, highly efficient solar cell structure with triple layered TiO2 photoanode. J Electrochim Acta 269:172–179CrossRefGoogle Scholar
  39. 39.
    Apriani T, Arsyad WS, Wulandari P, Hidayat R (2016) Investigation on the influences of layer structure and nanoporosity of light scattering TiO2 layer in DSSC J Phys 739(012134):1–6Google Scholar
  40. 40.
    Zhu L, Zhao YL, Lin XP, Gu XQ, Qiang YH (2014) The effect of light-scattering layer on the performance of dye-sensitized solar cell assembled using TiO2 double-layered films as photoanodes. Superlattices Microstruct 65:152–160CrossRefGoogle Scholar
  41. 41.
    Arote S, Rajendra Prasad MB, Tabhane V, Pathan H (2015) Influence of geometrical thickness of SnO2 based photoanode on the performance of Eosin-Y dye sensitized solar cell. Opt Mater 49:213–217CrossRefGoogle Scholar
  42. 42.
    Anjusree GS, Bhupathi A, Balakrishnan A, Vadukumpully S, Subramanian KRV, Sivakumar N, Ramakrishna S, Nair SV, Nair AS (2013) Fabricating fiber, rice and leaf-shaped TiO2 by tuning the chemistry between TiO2 and the polymer during electrospinning. RSC Adv 3:16720–16727CrossRefGoogle Scholar
  43. 43.
    Elumalai NK, Jose R, Archana PS, Hellappan V, Ramakrishna S (2012) Charge transport through electrospun SnO2 nanoflowers and nanofibers: role of surface trap density on electron transport dynamics. J Phys Chem C 116:22112–22120CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • G. K. R. Senadeera
    • 1
    • 2
    • 3
  • A. M. J. S. Weerasinghe
    • 1
    • 3
  • M. A. K. L. Dissanayake
    • 1
    • 3
    Email author
  • C. A. Thotawatthage
    • 1
    • 2
  1. 1.National Institute of Fundamental StudiesKandySri Lanka
  2. 2.Department of PhysicsThe Open University of Sri LankaNugegodaSri Lanka
  3. 3.Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka

Personalised recommendations