Skip to main content
Log in

Fe–Pt thin film for oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thin films of FexPt100−x (0 < x < 80) alloy were prepared via magnetron sputtering deposition and investigated as electrocatalysts for the oxygen reduction reaction, a process that is central to hydrogen fuel cell technology. Room temperature sputtering produced smooth, uniform films of tightly packed nanocrystallites with a disordered face-centred cubic crystal structure. The electrocatalytic performance of the Fe–Pt thin film catalysts was measured using rotating disk electrode technique and compared with state-of-the-art commercial Pt/C catalysts. Maximum area-specific activity for oxygen reduction of 0.87 mA cm−2 at 0.9 V vs. RHE was measured on the Fe46Pt54 film, which was 1.5 times that of pure sputtered Pt (0.57 mA cm−2) and almost twice the value for commercial Pt/C (0.45 mA cm−2) at the same potential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  CAS  PubMed  Google Scholar 

  2. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  PubMed  Google Scholar 

  3. Wang F-C, Peng C-H (2014) The development of an exchangeable PEMFC power module for electric vehicles. Int J Hydrogen Energy 39:3855–3867

    Article  CAS  Google Scholar 

  4. Wang F-C, Gao C-Y, Li S-C (2014) Impacts of power management on a PEMFC electric vehicle. Int J Hydrogen Energy 39:17336–17346

    Article  CAS  Google Scholar 

  5. Larriba T, Garde R, Santarelli M (2013) Fuel cell early markets: techno-economic feasibility study of PEMFC-based drivetrains in materials handling vehicles. Int J Hydrogen Energy 38:2009–2019

    Article  CAS  Google Scholar 

  6. Wheeler DJ, Yi JS, Fredley R, Yang D, Patterson T, VanDine L (2001) Advancements in fuel cell stack technology at international fuel cells. J New Mat Electrochem Syst 4:233–238

    CAS  Google Scholar 

  7. Ellis MW, von Spakovsky MR, Nelson DJ (2001) Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc IEEE 89:1808–1818

    Article  CAS  Google Scholar 

  8. Rhen FMF, McKeown C (2017) Enhanced methanol oxidation on strained Pt films. J Phys Chem C 121:2556–2562

    Article  CAS  Google Scholar 

  9. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ Ir reflectance spectroscopy studies. J Electroanal Chem 563:81–89

    Article  CAS  Google Scholar 

  10. Holton OT, Stevenson JW (2013) The role of platinum in proton exchange membrane fuel cells. Platinum Met Rev 57:259–271

    Article  CAS  Google Scholar 

  11. Jaksic JM, Ristic NM, Krstajic NV, Jaksic MM (1998) Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding factors—I. Individual electrocatalytic properties of transition metals. Int J Hydrogen Energy 23:1121–1156

    Article  CAS  Google Scholar 

  12. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–2302

    Article  CAS  Google Scholar 

  13. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  14. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction an in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  15. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J Electroanal Chem 460:258–262

    Article  CAS  Google Scholar 

  16. Sneed BT, Young AP, Tsung CK (2015) Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7:12248–12265

    Article  CAS  PubMed  Google Scholar 

  17. Chan MCY, Chen L, Nan F, Britten JF, Bock C, Botton GA (2012) Structure, ordering, and surfaces of Pt-Fe alloy catalytic nanoparticles from quantitative electron microscopy and X-ray diffraction. Nanoscale 4:7273–7279

    Article  CAS  PubMed  Google Scholar 

  18. Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J Power Sources 172:50–56

    Article  CAS  Google Scholar 

  19. Nilekar AU, Xu Y, Zhang J, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal 46:276–284

    Article  CAS  Google Scholar 

  20. Li W, Zhou W, Li H, Zhou Z, Zhou B, Sun G, Xin Q (2004) Nano-structured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim Acta 49:1045–1055

    Article  CAS  Google Scholar 

  21. Li W, Xin Q, Yan Y (2010) Nanostructured Pt–Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition. Int J Hydrogen Energy 35:2530–2538

    Article  CAS  Google Scholar 

  22. Duan H, Hao Q, Xu C (2014) Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J Power Sources 269:589–596

    Article  CAS  Google Scholar 

  23. Yan Z, Wang M, Liu J, Liu R, Zhao J (2014) Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell. Electrochim Acta 141:331–339

    Article  CAS  Google Scholar 

  24. Chen W, Kim J, Sun S, Chen S (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112:3891–3898

    Article  CAS  Google Scholar 

  25. Ye H, Crooks RM (2007) Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J Am Chem Soc 129:3627–3633

    Article  CAS  PubMed  Google Scholar 

  26. Ramirez-Caballero GE, Ma Y, Callejas-Tovar R, Balbuena PB (2010) Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Phys Chem Chem Phys 12:2209–2218

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J et al (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  PubMed  Google Scholar 

  28. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  29. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J Phys Chem B 106:4181–4191

    Article  CAS  Google Scholar 

  30. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  PubMed  Google Scholar 

  31. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  PubMed  Google Scholar 

  32. Kocha SS, Shinozaki K, Zack JW, Myers DJ, Kariuki NN, Nowicki T, Stamenkovic V, Kang Y, Li D, Papageorgopoulos D (2017) Best practices and testing protocols for benchmarking ORR activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatal 8:366–374

    Article  CAS  Google Scholar 

  33. Kuo C-M, Kuo PC, Wu H-C (1999) Microstructure and magnetic properties of Fe100–XPtx alloy films. J Appl Phys 85:2264–2269

    Article  CAS  Google Scholar 

  34. Ristau RA, Barmak K, Lewis LH, Coffey KR, Howard JK (1999) On the relationship of high coercivity and L10 ordered phase in Copt and FePt thin films. J Appl Phys 86:4527–4533

    Article  CAS  Google Scholar 

  35. Antolini E (2016) Iron-containing platinum-based catalysts as cathode and anode materials for low-temperature acidic fuel cells: a review. RSC Adv 6:3307–3325

    Article  CAS  Google Scholar 

  36. Denton AR, Ashcroft NW (1991) Vegard law. Phys Rev A 43:3161–3164

    Article  CAS  PubMed  Google Scholar 

  37. Nosé Y, Kushida A, Ikeda T, Nakajima H, Tanaka K, Numakura H (2003) Re-examination of phase diagram of Fe-Pt system. Mater Trans 44:2723–2731

    Article  Google Scholar 

  38. Takahashi YK, Ohnuma M, Hono K (2003) Ordering process of sputtered FePt films. J Appl Phys 93:7580–7582

    Article  CAS  Google Scholar 

  39. Gottesfeld S, Raistrick I, Srinivasan S (1987) Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film. J Electrochem Soc 134:1455–1462

    Article  CAS  Google Scholar 

  40. Shinozaki K, Zack JW, Richards RM, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J Electrochem Soc 162:F1144–F1158

    Google Scholar 

  41. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by Science Foundation Ireland Grant Number 12/IP/1692 and the HEA PRTLI4 programme (INSPIRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. F. Rhen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKeown, C., Rhen, F.M.F. Fe–Pt thin film for oxygen reduction reaction. J Appl Electrochem 48, 1009–1017 (2018). https://doi.org/10.1007/s10800-018-1228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1228-9

Keywords

Navigation