Journal of Applied Electrochemistry

, Volume 48, Issue 7, pp 827–834 | Cite as

Deposition mechanism of aluminum on uranium in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid by galvanic displacement

  • Yidong Jiang
  • Liping Fang
  • Lizhu Luo
  • Shaofei Wang
  • Xiaolin Wang
Research Article
Part of the following topical collections:
  1. Electrodeposition


Aluminum (Al) coatings, which are found to be dendrites, have been deposited on uranium (U) substrate in ionic liquid via galvanic displacement. Interestingly, a dense Al nano-layer has formed between the Al dendrites and the U substrate. In this work, the growth mechanism of the Al coating has been investigated by ultraviolet–visible spectroscopy, scanning electron microscopy, grazing incidence X-ray diffraction, and electrochemical measurements: the galvanic reaction sees the oxidation of U from the substrate while Al2Cl7 are reduced on its surface, driven by the electrochemical potential difference between Al and U. Furthermore, we have found that the Al nano-layer passivates the uranium surface, which is proved to be the rate limiting step in the galvanic deposition process; the observation of the interface morphology evolution process indicates that this Al nano-layer grows in a three-dimensional mode. This work demonstrates a convenient approach to deposit dense Al nano-layer on U, without any external power source.

Graphical Abstract


Galvanic deposition Ionic liquid Aluminum nano-layer 



The authors would like to thank Prof. Ling, Prof. Zhang, Colleague Xiandong Meng and Anyi Yin for technical support. And this work is supported by the National Natural Science Foundation of China (No. 11404295), National Key Scientific Apparatus Development of Special Item of China (No. 2012YQ130125) and the Disipline Development Foundation of China Academy of Engineering and Physics (No. 2015B0301065).


  1. 1.
    Lee DJ, Lee HS (2006) Microelectron Reliab 46:1194Google Scholar
  2. 2.
    Liu FM, Green. M (2004) J Mater Chem 14:1526CrossRefGoogle Scholar
  3. 3.
    Neves HP, Kudrle TD, Chen JM, Adams SG, Maharbiz M, Lopatin S, MacDonald NC (1998) MRS Proc 546:139CrossRefGoogle Scholar
  4. 4.
    Yeh JLA, Jiang H, Neves HP, Tien NC (2008) J Microelectromech S 9:281CrossRefGoogle Scholar
  5. 5.
    Shacham-Diamand Y, Sverdlov Y (2000) Microelectron Eng 50:525CrossRefGoogle Scholar
  6. 6.
    Abbott AP, Frisch G, Hartley J, Karim WO, Ryder KS (2015) Prog Nat Sci Mater 25:595CrossRefGoogle Scholar
  7. 7.
    Abbott AP, Frisch G, Ryder KS (2013) Annu Rev Mater Res 43:335CrossRefGoogle Scholar
  8. 8.
    Wang YC, Lin JY, Han Wang C, Huang PL, Lee SL, Chang JK (2014) RSC Adv 4:35298CrossRefGoogle Scholar
  9. 9.
    Falola BD (2015) I. I. Suni. Curr. Opin. Solid State Mater Sci 19:77CrossRefGoogle Scholar
  10. 10.
    DaRosa CP, Iglesia E, Maboudian. R (2008) J Electrochem Soc 155:244CrossRefGoogle Scholar
  11. 11.
    DaRosa CP, Maboudian R, Iglesia. E (2008) J Electrochem Soc 155:70CrossRefGoogle Scholar
  12. 12.
    DaRosa CP, Maboudian R, Iglesia E (2009) Electrochim Acta 54:3270CrossRefGoogle Scholar
  13. 13.
    Abbott AP, Nandhra S, Postlethwaite S, Smith EL, Ryde KS (2007) Phys Chem Chem Phys 9:3735CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lahiri A, Borisenko N, Olschewski M, Gustus R, Zahlbach J, Endres F (2015) Angew Chem Int Ed 54:11870CrossRefGoogle Scholar
  15. 15.
    Jiang YD, Ding JJ, Luo LZ, Shi P, Wang XL (2017) Surf Coat Technol 309:980CrossRefGoogle Scholar
  16. 16.
    Egert CM, Scott. DG (1987) J Vac Sci Technol A 5:2724CrossRefGoogle Scholar
  17. 17.
    Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263CrossRefGoogle Scholar
  18. 18.
    Jiang YD, Luo LZ, Wang SF, Bing R, Zhang GK, Wang XL (2018) Appl Surf Sci 427:528CrossRefGoogle Scholar
  19. 19.
    Jiang T, Brym MJC, Dubé G, Lasia A, Brisard GM (2006) Surf Coat Technol 201:1CrossRefGoogle Scholar
  20. 20.
    Falola BD, Suni. II (2014) J Electrochem Soc 161:107CrossRefGoogle Scholar
  21. 21.
    Luo YR (2007) Comprehensive hand book of chemical bond energies. CRC Press, Boca RatonCrossRefGoogle Scholar
  22. 22.
    Johnson AJ, Shreir LL (1965) Corros Sci 5:269CrossRefGoogle Scholar
  23. 23.
    Carraro C, Maboudian R, Magagnin L (2007) Surf Sci Rep 62:499CrossRefGoogle Scholar
  24. 24.
    Landolt D (1987) Electrochim Acta 32:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology on Surface Physics and Chemistry LaboratoryJiangyouChina
  2. 2.College of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations