Skip to main content

Advertisement

Log in

Electrochemical energy storage performance of asymmetric PEDOT and graphene electrode-based supercapacitors using ionic liquid gel electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical and energy storage properties of thin layer hybrid supercapacitors in the solid-state platform utilizing two asymmetric poly(3,4-ethylenedioxythiophene) PEDOT and graphene electrodes with 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid gel electrolyte are described. In hybrid design, energy storage is by electrical double-layer charges at graphene and through reversible faradic redox process at PEDOT while the high operational voltage of 2.7 V due to ionic liquid electrolyte boosted the energy density. The PEDOT film was synthesized by pulsed current electropolymerization as confirmed by Raman analysis and was in the microporous form for pervasive access to electrolyte ions. Areal mass of PEDOT was varied and the hybrid supercapacitors with PEDOT/graphene active mass ratio 0.35, 0.46, and 0.78 were analyzed for specific capacity and charge–discharge behavior in order to balance the charge and charge transfer kinetics for optimized hybrid supercapacitor device. Randles–Sevcik analysis showed high ClO4 ion diffusivity 6.6 × 10−9 cm2 s−1 at 2.7 V in ionic liquid gel which is comparable to liquid electrolytes. By combining the micro-porosity of PEDOT, large 600 m2 g−1 surface area of graphene and high 2.7 V stability of ([BMIM][BF4]) ionic liquid gel electrolyte, energy density of 14.9 Wh kg−1 at specific power rating of 9.8 kW kg−1 are realized and stability over 2000 charge–discharge cycles is shown. Impedance and Bode analysis using equivalent circuit model is presented. The characteristics of solar electricity storage are described which can have applications as autonomous energy source harvesting light energy for powering portable power electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705

    Article  CAS  Google Scholar 

  2. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  CAS  PubMed  Google Scholar 

  3. Wang K, Zou W, Quan B, Yu A, Wu H, Jiang P, Wei Z (2011) An all-solid-state flexible micro-supercapacitor on a chip. Adv Energy Mater 1:1068–1072

    Article  CAS  Google Scholar 

  4. Yan XB, Chen JT, Yang J, Xue QJ, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  PubMed  Google Scholar 

  5. Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang ZL (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem 51:4934–4938

    Article  CAS  Google Scholar 

  6. Zhang Z, Chen X, Chen P, Guan G, Qiu L, Lin H, Yang Z, Bai W, Luo Y, Peng H (2014) Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv Mater 26:466–470

    Article  CAS  PubMed  Google Scholar 

  7. Murakami T, Kawashima N, Miyasaka T (2005) A high-voltage dye-sensitized photocapacitor of a three-electrode system. Chem Commun 26:3346–3348

    Article  CAS  Google Scholar 

  8. Zhan Y, Mei Y, Zheng L (2014) Materials capability and device performance in flexible electronics for the internet of things. J Mater Chem C 2:1220–12324

    Article  CAS  Google Scholar 

  9. Somov A, Ho C, Passerone R, Evans J, Wright P (2012) Towards extending sensor node lifetime with printed supercapacitors, wireless sensor networks. Proc 9th European conference (EWSN 2012). Trento, pp 212–227

  10. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  11. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  PubMed  Google Scholar 

  12. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  CAS  Google Scholar 

  13. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  14. Snook G, Kao P, Best A (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  15. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31

    Article  CAS  PubMed  Google Scholar 

  16. Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404

    Article  CAS  Google Scholar 

  17. Khomenko V, Raymundo-Piñero E, Frackowiak E, Béguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567–573

    Article  CAS  Google Scholar 

  18. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  PubMed  Google Scholar 

  19. Tang Z, Tang C, Gong H (2012) A high energy density asymmetric supercapacitor from nanoarchitectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

    Article  CAS  Google Scholar 

  20. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  21. Wang R, Yan X (2014) Superior asymmetric supercapacitor based on Ni–Co oxide nanosheets and carbon nanorods. Sci Rep 4:3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Yan C, Sumboja A, Lee PS (2014) High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3:119–126

    Article  CAS  Google Scholar 

  23. Shao Y, Wang H, Zhang Q, Li Y (2013) High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C 1:1245–1251

    Article  CAS  Google Scholar 

  24. Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Bélanger D (2003) Influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor. J Electrochem Soc 150:A747-A752

    Article  CAS  Google Scholar 

  25. Park JH, Park OO (2002) Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J Power Sources 111:185–190

    Article  CAS  Google Scholar 

  26. Sidhu NK, Rastogi AC (2016) Electrochemical performance of supercapacitors based on carbon nanofoam composite and microporous poly (3, 4-ethylenedioxythiophene) thin film asymmetric electrodes. Mater Chem Phys 176:75–86

    Article  CAS  Google Scholar 

  27. Meng FH, Ding Y (2011) Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater 23:4098–4102

    Article  CAS  PubMed  Google Scholar 

  28. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paper-like polymer supercapacitors. Nano Lett 10:4025

    Article  CAS  PubMed  Google Scholar 

  29. Lin H, Li L, Ren J, Cai Z, Qiu L, Yang Z, Peng H (2013) Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep 3:1353. https://doi.org/10.1038/srep01353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu S, Rajamani R, Yu X (2012) Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett 100:104103. https://doi.org/10.1063/1.3691948

    Article  CAS  Google Scholar 

  31. Lehtimäki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 7:22137–22147

    Article  CAS  PubMed  Google Scholar 

  32. He Y, Chen W, Gao C, Zhao J, Li Z, Xie E (2013) An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5:8799–8820

    Article  CAS  PubMed  Google Scholar 

  33. Qiying L, Wang S, Sun H, Luo J, Xiao J, Xiao JW, Xiao F, Wang S (2016) Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett 16:40–47

    Article  CAS  Google Scholar 

  34. Gao H, Xiao F, Ching CB, Duan H (2012) Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl Mater Interfaces 4:7020–7026

    Article  CAS  PubMed  Google Scholar 

  35. Choi B, Chang S, Kang H, Park C, Kim H, Hong W, Lee S, Huh Y (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988

    Article  CAS  PubMed  Google Scholar 

  36. Xiao X, Ding T, Yuan L, Shen Y, Zong Q, Zhang X, Cao Y, Hu B, Zhai T, Gong L, Chen J, Tong Y, Zhou J, Wang Z (2012) WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. ACS Nano 2:1328–1332

    CAS  Google Scholar 

  37. Kurra N, Wang R, Alshareef HN (2015) All conducting polymer electrodes for asymmetric solid-state supercapacitors. J Mater Chem A 3:7368–7374

    Article  CAS  Google Scholar 

  38. Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids database and evaluation. J Phys Chem Ref Data 35:1475–1517

    Article  CAS  Google Scholar 

  39. Kang YJ, Chun DJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes and triblock-copolymer ion gels. ACS Nano 6:6400–6406

    Article  CAS  PubMed  Google Scholar 

  40. Pandey GP, Rastogi AC, Westgate CR (2013) Polyacrylonitrile and 1-ethyl-3-methylimidazolium thiocyanate based gel polymer electrolyte for solid-state supercapacitors with graphene electrodes. ECS Trans 50:145–151

    Article  CAS  Google Scholar 

  41. Pandey GP, Rastogi AC, Westgate CR (2014) All-solid-state supercapacitors with poly (3, 4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J Power Sources 245:857–864

    Article  CAS  Google Scholar 

  42. Pandey GP, Rastogi AC (2012) Solid-state supercapacitors based on pulse polymerized poly (3, 4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. J Electrochem Soc 159:A1664-A1671

    Google Scholar 

  43. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  44. Pandey GP, Rastogi AC (2013) Synthesis and characterization of pulsed polymerized poly (3, 4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochim Acta 87:158–168

    Article  CAS  Google Scholar 

  45. Österholm AM, Shen DE, Dyer AL, Reynolds JR (2013) Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl Mater Interfaces 5:13432–13440

    Article  CAS  PubMed  Google Scholar 

  46. Wee G, Salim T, Lam Y, Mhaisalkar SG, Srinivasan M (2011) Printable photo-supercapacitor using single-walled carbon nanotubes. Energy Environ Sci 4:413–416

    Article  CAS  Google Scholar 

  47. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  48. Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) In situ spectroelectrochemical raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812

    Article  CAS  Google Scholar 

  49. Pfluger P, Street GB (1984) Chemical, electronic, and structural properties of conducting heterocyclic polymers: a view by XPS. J Chem Phys 80:544–553

    Article  CAS  Google Scholar 

  50. Han DH, Kim JW, Park SM (2006) Electrochemistry of conductive polymers 38. Electrodeposited poly(3,4-ethylenedioxy-thiophene) studied by current sensing atomic force microscopy. J Phys Chem B 110:14874–14880

    Article  CAS  PubMed  Google Scholar 

  51. James DW, Mayers RE (1982) Ion-ion-solvent interactions in solution. I. Solutions of LiClO4 in acetone. Aust J Chem 35:1775–1784

    Article  CAS  Google Scholar 

  52. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett 6:2667–2673

    Article  CAS  PubMed  Google Scholar 

  53. Childres I, Jaureguib LA, Park W, Cao H,. Chen YP (2013) Raman spectroscopy of graphene and related material. In: Jang JI (ed) New developments in photon & materials research. Nova Science, Hauppauge

    Google Scholar 

  54. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 30:413–550

    Article  CAS  Google Scholar 

  55. Gao H, Xiao F, Ching CB, Duan H (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810

    Article  CAS  PubMed  Google Scholar 

  56. Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl Mater Interfaces 5:8467–8476

    Article  CAS  PubMed  Google Scholar 

  57. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181

    Article  Google Scholar 

  58. Duay J, Gillette E, Liu R, Lee SB (2012) Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Phys Chem Chem Phys 14:3329–3337

    Article  CAS  PubMed  Google Scholar 

  59. Jin Y, Chen HY, Chen MH, Liu N, Li QW (2013) Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5:3408–3416

    Article  CAS  PubMed  Google Scholar 

  60. Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S,. Huh YS (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988

    Article  CAS  PubMed  Google Scholar 

  61. Taberna PL, Simon JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292-A300

    Article  CAS  Google Scholar 

  62. Sheng K, Sun Y, Li C, Yuan W, Shi G (2012) Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation, under Award Number 1318202, “Partnership for Innovation in Electrochemical Energy Storage” which is gratefully acknowledged. The authors also acknowledge the Small Scale Integration and Packaging for funding support, ADLG-144, for use of Analytical and Diagnostics Laboratory (ADL) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Rastogi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Research involving human and animal participants

No involvement of human participants and/or animals in the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeidat, A.M., Rastogi, A.C. Electrochemical energy storage performance of asymmetric PEDOT and graphene electrode-based supercapacitors using ionic liquid gel electrolyte. J Appl Electrochem 48, 747–764 (2018). https://doi.org/10.1007/s10800-018-1182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1182-6

Keywords

Navigation