Skip to main content

Advertisement

Log in

Synthesis of porous graphitic carbon from biomass by one-step method And its role in the electrode for supercapacitor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous graphitic carbon materials (PGCs) with a microtubular structure were synthesized by a simple method simultaneously completing graphitization and activation for the mixture of willow catkins, KCl, and different ferric salts. The introduction of KCl was crucial to develop a porous structure. KCl, replacing corrosive KOH or poisonous ZnCl2, greatly decreased the cost for production of PGCs. The resulting material PGCN, which was produced by willow catkins, KCl, and Fe(NO3)3, not only inherited the natural microtubular morphology of willow catkins but also possessed a high graphitization degree and abundant porosity. As such, PGCN could serve as an ideal substrate for MnO2 deposition to alleviate its accumulation and improve its conductivity. The obtained PGCN/MnO2 composite electrode significantly enhanced high specific capacitance 571.1 F g− 1 at 2 A g− 1 based on the mass of MnO2. Even at a high current density of 50 A g− 1, specific capacitance still reached 382.1 F g− 1. Furthermore, the electrode exhibited outstanding cycling stability with only 14.8% degradation after 3000 cycles. This study proposes a novel graphitization–activation way for synthesis of porous graphitic carbon by utilizing biomass waste to alleviate the dependence on non-renewable sources.

Graphical Abstract

Schematic diagram of porous graphitic carbon by carbonizing the mixture of willow catkins, Fe(NO3)3, and KCl. The obtained PGCN which inherited the natural microtubular morphology of willow catkins had high graphitized and porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Adam P, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  3. Akbulut S, Yilmaz M, Raina S, Hsu SH, Kang WP (2017) Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil. J Appl Electrochem 47:1035–1044

    Article  CAS  Google Scholar 

  4. Wang G, Xu H, Lu L, Zhao H, Tian Y, An W (2016) High-voltage asymmetric supercapacitor based on MnO2 nanotubes//active carbon-multiwalled carbon nanotubes. J Appl Electrochem 46:1091–1097

    Article  CAS  Google Scholar 

  5. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913

    Article  CAS  Google Scholar 

  6. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  7. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater:1604569

  8. Sun L, Tian C, Wang L, Zou J, Mu G, Fu H (2011) Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. J Mater Chem 21:7232–7239

    Article  CAS  Google Scholar 

  9. Bon YS, Seok CG, Soon KK, Jong-Sung Yu, Kamil G, Mietek J (2005) Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J Am Chem Soc 127:4188–4189

    Article  Google Scholar 

  10. Wang L, Tian C, Wang H, Ma Y, Wang B, Fu H (2010) Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization. J Phys Chem 114:8727–8733

    CAS  Google Scholar 

  11. Gu W, Hu L, Li J, Wang E (2016) Iron and nitrogen co-doped hierarchical porous graphitic carbon for a high-efficiency oxygen reduction reaction in a wide range of pH. J Mater Chem A 4:14364–14370

    Article  CAS  Google Scholar 

  12. Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490:63–68

    Article  CAS  Google Scholar 

  13. Liu Y, Liu Q, Gu J, Kang D, Zhou F, Zhang W, Wu Y, Zhang D (2013) Highly porous graphitic materials prepared by catalytic graphitization. Carbon 64:132–140

    Article  CAS  Google Scholar 

  14. Zhai D, Du H, Li B, Zhu Y, Kang F (2011) Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon 49:725–729

    Article  CAS  Google Scholar 

  15. Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848

    Article  CAS  Google Scholar 

  16. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  17. Ma Y, Zhao J, Zhang L, Zhao Y, Fan Q, Li X, Hu Z, Huang W (2011) The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. Carbon 49:5292–5297

    Article  CAS  Google Scholar 

  18. Zhang X, Zhang K, Li H, Cao Q, Jin L, Li P (2017) Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors. J Power Sources 344:176–184

    Article  CAS  Google Scholar 

  19. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  CAS  Google Scholar 

  20. He X, Zhao N, Qiu J, Xiao N, Yu M, Yu C, Zhang X, Zheng M (2013) Synthesis of hierarchical porous carbons for super capacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. J Mater Chem A 1:9440–9448

    Article  CAS  Google Scholar 

  21. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 6:880–889

    Article  CAS  Google Scholar 

  22. Xie L, Sun G, Su F, Guo X, Kong Q, Li X, Huang X, Wan L, song W, Li K, Lv C, Chen CM (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4:1637–1646

    Article  CAS  Google Scholar 

  23. Liu T, Liu E, Ding R, Luo Z, Hu T, Li Z (2015) Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization. Electrochim Acta 173:50–58

    Article  CAS  Google Scholar 

  24. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:1–6

    Article  Google Scholar 

  25. Ma F, Ma D, Wu G, Geng W, Shao J, Song S, Wan J, Qiu J (2016) Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem Commun 52:6673–6676

    Article  CAS  Google Scholar 

  26. Yorgun S, Vural N, Demiral H (2009) Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Micropor Mesopor Mat 122:189–194

    Article  CAS  Google Scholar 

  27. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS nano 9:2556–2564

    Article  CAS  Google Scholar 

  28. Chang B, Guo Y, Li Y, Yin H, Zhang S, Yang B, Dong X (2015) Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J Mater Chem A 3:9565–9577

    Article  CAS  Google Scholar 

  29. Song H, Yang G, Wang C (2014) General scalable strategy toward heterogeneously doped hierarchical porous graphitic carbon bubbles for lithium-ion battery anodes. ACS Appl Mater Interfaces 6:21661–21668

    Article  CAS  Google Scholar 

  30. Gutiérrez-Pardo A, Ramírez-Rico J, Cabezas-Rodríguez R, Martínez-Fernández J (2015) Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. J Power Sources 278:18–26

    Article  Google Scholar 

  31. Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    Article  CAS  Google Scholar 

  32. Xing Z, Ju Z, Zhao Y, Wan J, Zhu Y, Qiang Y, Qian Y (2016) One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep 6

  33. Yadav R, Dixit CK (2017) Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J Sci Adv Mater Device 2:141–149

    Article  Google Scholar 

  34. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  35. Kundu M, Liu L (2013) Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J Power Sources 243:676–681

    Article  CAS  Google Scholar 

  36. Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752

    Article  CAS  Google Scholar 

  37. An J, Liu J, Ma Y, Li R, Li M, Li MYS (2012) Fabrication of graphene/polypyrrole nanotube/MnO2 nanotube composite and its supercapacitor application. Eur Phys J Appl Phys 58:30403

    Article  Google Scholar 

  38. Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P (2012) Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 50:4865–4870

    Article  CAS  Google Scholar 

  39. Kong S, Cheng K, Ouyang T, Gao Y, Ye K, Wang G, Cao D (2017) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39

    Article  CAS  Google Scholar 

  40. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  41. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772

    Article  CAS  Google Scholar 

  42. Antiohos D, Pingmuang K, Romano MS, Beirne S, Romeo T, Aitchison P, Minett A, Wallace G, Phanichphant S, Chen J (2013) Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochim Acta 101:99–108

    Article  CAS  Google Scholar 

  43. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    Article  CAS  Google Scholar 

  44. Liu J, Zhang Y, Li Y, Li J, Chen Z, Feng H, Li J, Jiang J, Qian D (2015) In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior. Electrochim Acta 173:148–155

    Article  CAS  Google Scholar 

  45. Zhang J, Jiang J, Zhao XS (2011) Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chems 115(14):6448–6454

    CAS  Google Scholar 

  46. Xiong C, Li T, Dang A, Zhao T, Li H, Lv H (2016) Two-step approach of fabrication of three-dimensional MnO2–graphene–carbon nanotube hybrid as a binder-free supercapacitor electrode. J Power Sources 306:602–610

    Article  CAS  Google Scholar 

  47. Wu D, Xu S, Li M, Zhang C, Zhu Y, Xu Y, Zhang W, Huang R, Qi R, Wang L, Chu PK (2015) Hybrid MnO2/C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. J Mater Chem A 3:16695–16707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are very grateful for the financial support of the National Natural Science Foundation of China NSFC (No. 51174144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, K., Li, H. et al. Synthesis of porous graphitic carbon from biomass by one-step method And its role in the electrode for supercapacitor. J Appl Electrochem 48, 415–426 (2018). https://doi.org/10.1007/s10800-018-1170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1170-x

Keywords

Navigation