Journal of Applied Electrochemistry

, Volume 48, Issue 6, pp 569–578 | Cite as

In-situ determination of thickness and electrochemical properties of barrier oxide film on impure aluminium in aqueous solution

  • Nils-Håvard Giskeødegård
  • Ola Hunderi
  • Kemal Nisancioglu
Research Article
  • 60 Downloads

Abstract

Lead is present as a trace element (ppm level) in nearly all commercial aluminium alloys. The objective of this work is to investigate the changes incurred by the presence of a small amount (20 ppm) of alloyed Pb and heat treatment on the properties of the barrier oxide in relation to those on pure aluminium, in chloride free acetate buffer. The potential range of interest was − 1.1 to − 0.1 V versus saturated Hg/Hg2SO4. The methods used were electrochemical impedance spectroscopy (EIS) and chronoamperometry. The film growth data obtained by chronoamperometry was analysed by use of Cabrera–Mott inverse square logarithmic law. The activation energy for film growth, obtained from this analysis, decreased with increasing heat treatment time and temperature, along with deleterious changes in the electrochemical properties of the oxide, indicating reduced passivity. The steady state data obtained by EIS showed decreasing oxide resistivity with increasing heat-treatment temperature of the samples in the range 300–600 °C. These changes were attributed to reduced passivity caused by increased segregation of Pb at the aluminium substrate-film interface.

Graphical Abstract

Keywords

Chronoamperometry Electrochemical impedance spectroscopy Cabrera–Mott inverse square logarithmic growth law Trace element Pb Passivity Heat treatment Segregation 

Notes

Acknowledgements

This work was supported by The Research Council of Norway.

References

  1. 1.
    Gabrisch H, Dahmen U, Johnson E (1998) Microsc Microanal 4:286CrossRefGoogle Scholar
  2. 2.
    Gundersen JTB, Aytac A, Nordlien JH, Nisancioglu K (2004) Corros Sci 46:697CrossRefGoogle Scholar
  3. 3.
    Anawati A, Graver B, Nordmark H, Zhao Z, Frankel G, Walmsley JC, Nisancioglu K (2010) J Electrochem Soc 157:C313CrossRefGoogle Scholar
  4. 4.
    Shimizu K, Furneaux RC, Thompson GE, Wood GC, Gotoh A, Kobayashi K (1991) Oxid Met 35:427CrossRefGoogle Scholar
  5. 5.
    Sævik Ø, Yu Y, Nordlien JH, Nisancioglu K (2005) J Electrochem Soc 152:B334CrossRefGoogle Scholar
  6. 6.
    Yu Y, Sævik Ø, Nordlien JH, Nisancioglu K (2005) J Electrochem Soc 152:B327CrossRefGoogle Scholar
  7. 7.
    Giskeødegård NH, Hunderi O, Nisancioglu K (2015) J Solid State Electrochem 19:3473–3483CrossRefGoogle Scholar
  8. 8.
    Masaki T (ed) (1990) Binary alloy phase diagrams. ASM International, Materials ParkGoogle Scholar
  9. 9.
    Armstrong RD, Edmondson K (1973) Electrochim Acta 18:937CrossRefGoogle Scholar
  10. 10.
    Giskeødegård NH (2016) Barrier oxide growth and dissolution on aluminium in aqueous media. Dissertation, Norwegian University of Science and Technology, https://brage.bibsys.no/xmlui/bitstream/handle/11250/2426386/Nils%20H%C3%A5vard%20Giske%C3%B8deg%C3%A5rd_PhD.pdf?sequence=1
  11. 11.
    Gudic S, Radosevic S, Kliskic M (1996) J Appl Electrochem 26:1027CrossRefGoogle Scholar
  12. 12.
    Cabrera N, Mott NF (1948–1949) Rep Prog Phys 12:163Google Scholar
  13. 13.
    Ghez R (1973) J Chem Phys 58:1838CrossRefGoogle Scholar
  14. 14.
    Vetter KJ (1971) Electrochim Acta 16:1923CrossRefGoogle Scholar
  15. 15.
    Bessone J, Mayer C, Jüttner K, Lorenz WJ (1983) Electrochim Acta 28:171CrossRefGoogle Scholar
  16. 16.
    De Wit J, Lenderink H (1996) Electrochim Acta 41:1111CrossRefGoogle Scholar
  17. 17.
    Young L (1961) Anodic oxide films. Academic Press, New YorkGoogle Scholar
  18. 18.
    Jorcin JB, Orazem ME, Pébère N, Tribollet B (2006) Electrochim Acta 51:1473CrossRefGoogle Scholar
  19. 19.
    Şenel E, Nisancioglu K (2018) Corros Sci 131:330CrossRefGoogle Scholar
  20. 20.
    Sævik Ø, Nordlien JH, Nisancioglu K (2003) ATB Metall 43(1–2):159Google Scholar
  21. 21.
    Walmsley JC, Sævik Ø, Graver B, Mathiesen RH, Nisancioglu K (2007) J Electrochem Soc 154:C28CrossRefGoogle Scholar
  22. 22.
    Darwish A, El-Zaidia E, El-Naass M, Hanafy T, Al-Zubaidi A (2014) J Alloys Compd 589:393CrossRefGoogle Scholar
  23. 23.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musianid M (2010) J Electrochem Soc 157:C452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Hydro Primary Metal Technology, Herøya IndustriparkPorsgrunnNorway

Personalised recommendations