Skip to main content
Log in

Electrochemical and anodic behaviors of MnO2/Pb nanocomposite in zinc electrowinning

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the electrochemical and anodic behaviors of MnO2/Pb anodes in electrowinning process were investigated. An accumulative roll-bonding (ARB) method was applied to fabricate MnO2/Pb nanocomposites. The electrochemical properties of the produced anodes were investigated by electrochemical impedance spectroscopy, cyclic voltammetry, electrowinning tests, and scanning electron microscopy. The results indicated that the ARB-process is an appropriate method to develop MnO2/Pb anodes. The produced anodes (Pb–0.5%MnO2-10pass samples) showed a 102% increase in current density compared to pure lead anode. The results of electrowinning tests revealed that Pb–0.5%MnO2-10pass samples had the best anodic performance with a significantly lower corrosion rate, product and electrolyte contamination, slime formation, energy consumption, and a higher current efficiency and consequently, a higher Zn deposition in cathode.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moskalyk RR, Alfantazi AM (2002) Nickel laterite processing and electrowinning practice. Miner Eng 15(8):593–605. https://doi.org/10.1016/S0892-6875(02)00083-3

    Article  CAS  Google Scholar 

  2. Msindo ZS, Sibanda V, Potgieter JH (2010) Electrochemical and physical characterisation of lead-based anodes in comparison to Ti–(70%) IrO2/(30%) Ta2O5 dimensionally stable anodes for use in copper electrowinning. J Appl Electrochem 40(3):691–699. https://doi.org/10.1007/s10800-009-0044-7

    Article  CAS  Google Scholar 

  3. Ma R, Cheng S, Zhang X, Li S, Liu Z, Li X (2016) Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning. Hydrometallurgy 159:6–11. https://doi.org/10.1016/j.hydromet.2015.10.031

    Article  CAS  Google Scholar 

  4. Clancy M, Bettles CJ, Stuart A, Birbilis N (2013) The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review. Hydrometallurgy 131–132:144–157. https://doi.org/10.1016/j.hydromet.2012.11.001

    Article  Google Scholar 

  5. Zhang Y-c, Chen B-m, Yang H-t, Huang H, Guo Z-c (2014) Anodic behavior and microstructure of Al/Pb-Ag-Co anode during zinc electrowinning. J Cent South Univ 21(1):83–88. https://doi.org/10.1007/s11771-014-1919-2

    Article  Google Scholar 

  6. Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater 2013:7. https://doi.org/10.1155/2013/736375

    Google Scholar 

  7. Palmas S, Polcaro AM, Ferrara F, Rodriguez Ruiz J, Delogu F, Bonatto-Minella C, Mulas G (2008) Electrochemical performance of mechanically treated SnO2 powders for OER in acid solution. J Appl Electrochem 38(7):907–913. https://doi.org/10.1007/s10800-008-9494-6

    Article  CAS  Google Scholar 

  8. Sun Y, Zhang Y, Zhang W, Li D, Gao L, Hou C, Liu Y (2015) Direct formation of porous MnO2/Ni composite foam applied for high-performance supercapacitors at mild conditions. Electrochim Acta 178:823–828. https://doi.org/10.1016/j.electacta.2015.08.092

    Article  CAS  Google Scholar 

  9. Jadhav PR, Suryawanshi MP, Dalavi DS, Patil DS, Patil PS, Jo EA, Kolekar SS, Wali AA, Karanjkar MM, Kim J-H (2015) Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor. Electrochim Acta 176:523–532. https://doi.org/10.1016/j.electacta.2015.07.002

    Article  CAS  Google Scholar 

  10. Liu H, Nie R, Yue Y, Zhang Q, Chen Q, Zhu J, Yu P, Xiao D, Wang C, Wang X (2015) Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram Int 41(9):11359–11364. https://doi.org/10.1016/j.ceramint.2015.05.094

    Article  CAS  Google Scholar 

  11. Kuo Y-L, Wu C-C, Chang W-S, Yang C-R, Chou H-L (2015) Study of poly (3,4-ethylenedioxythiophene)/MnO2 as composite cathode materials for aluminum-air battery. Electrochim Acta 176:1324–1331. https://doi.org/10.1016/j.electacta.2015.07.151

    Article  CAS  Google Scholar 

  12. Zhu T, He Z, Zhang G, Lu Y, Lin C, Chen Y, Guo H (2015) Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams. J Alloy Compd 644:186–192. https://doi.org/10.1016/j.jallcom.2015.04.185

    Article  CAS  Google Scholar 

  13. Karbasi M, Keshavarz Alamdari E (2015) Electrochemical evaluation of lead base composite anodes fabricated by accumulative roll bonding technique. Metall Mater Trans B 46(2):688–699. https://doi.org/10.1007/s11663-014-0272-z

    Article  CAS  Google Scholar 

  14. Karbasi M, Keshavarz Alamdari E (2015) Investigation of lead base composite anodes produced by accumulative roll bonding. Mater Des 67:118–129. https://doi.org/10.1016/j.matdes.2014.10.092

    Article  CAS  Google Scholar 

  15. Mohammadi M, Alfantazi A (2016) Evaluation of manganese dioxide deposition on lead-based electrowinning anodes. Hydrometallurgy 159:28–39. https://doi.org/10.1016/j.hydromet.2015.10.023

    Article  CAS  Google Scholar 

  16. Mohammadi M, Alfantazi A (2015) The performance of Pb–MnO2 and Pb–Ag anodes in 2 Mn(II)-containing sulphuric acid electrolyte solutions. Hydrometallurgy 153:134–144. https://doi.org/10.1016/j.hydromet.2015.02.009

    Article  CAS  Google Scholar 

  17. Schmachtel S, Toiminen M, Kontturi K, Forsén O, Barker MH (2009) New oxygen evolution anodes for metal electrowinning: MnO2 composite electrodes. J Appl Electrochem 39(10):1835–1848. https://doi.org/10.1007/s10800-009-9887-1

    Article  CAS  Google Scholar 

  18. Zhang W, Houlachi G (2010) Electrochemical studies of the performance of different Pb–Ag anodes during and after zinc electrowinning. Hydrometallurgy 104(2):129–135. https://doi.org/10.1016/j.hydromet.2010.05.007

    Article  CAS  Google Scholar 

  19. Abouzari MS, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ion 180(14):922–927. https://doi.org/10.1016/j.ssi.2009.04.002

    Article  Google Scholar 

  20. Lai Y, Li Y, Li J, Jiang L, Xu W, Lv X, Liu Y (2012) Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution—Tafel and EIS investigations. J Electroanal Chem 671:16–23. https://doi.org/10.1016/j.jelechem.2012.02.011

    Article  CAS  Google Scholar 

  21. Hu J (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrog Energy 29(8):791–797. https://doi.org/10.1016/j.ijhydene.2003.09.007

    Article  CAS  Google Scholar 

  22. Harrington DA, Conway BE (1987) ac Impedance of faradaic reactions involving electrosorbed intermediates—I. kinetic theory. Electrochim Acta 32(12):1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1

    Article  CAS  Google Scholar 

  23. Amadelli R, Maldotti A, Molinari A, Danilov FI, Velichenko AB (2002) Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media. J Electroanal Chem 534(1):1–12. https://doi.org/10.1016/S0022-0728(02)01152-X

    Article  CAS  Google Scholar 

  24. Ho JCK, Filho GT, Simpraga R, Conway BE (1994) Structure influence on electrocatalysis and adsorption of intermediates in the anodic O2 evolution at dimorphic α- and β-PbO2. J Electroanal Chem 366(1–2):147–162. https://doi.org/10.1016/0022-0728(93)03066-X

    Article  CAS  Google Scholar 

  25. Chawla N, Chawla KK(2006) Metal matrix composites, 1st edn. Springer, New York

    Google Scholar 

  26. Rashkov S, Dobrev T, Noncheva Z, Stefanov Y, Rashkova B, Petrova M (1999) Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes. Hydrometallurgy 52(3):223–230. https://doi.org/10.1016/S0304-386X(99)00005-5

    Article  CAS  Google Scholar 

  27. Li Y, Jiang LX, Lv XJ, Lai YQ, Zhang HL, Li J, Liu YX (2011) Oxygen evolution and corrosion behaviors of co-deposited Pb/Pb-MnO2 composite anode for electrowinning of nonferrous metals. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2011.08.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Tavangarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbasi, M., Keshavarz Alamdari, E., Amirkhani Dehkordi, E. et al. Electrochemical and anodic behaviors of MnO2/Pb nanocomposite in zinc electrowinning. J Appl Electrochem 48, 379–390 (2018). https://doi.org/10.1007/s10800-018-1163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1163-9

Keywords

Navigation