Skip to main content
Log in

Pt nanotube network with high activity for methanol oxidation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalysts with high performance, increased stability, and high surface area are essential for the widespread commercialization of fuel cells. Nanostructured materials emerge as potential candidates to meet these targets. We report on the synthesis and characterization of a nanostructured platinum electrocatalyst for methanol oxidation. Using a simple, one-step electroless method, an interconnected platinum nanotube network was prepared. The highly ordered, high-surface-area catalyst exhibited enhanced current density and durability for methanol oxidation. The catalyst shows a peak current density of 1.43 mA cm−2 at 50 mV s−1 and retained 25% of its initial activity after 1 h. The high catalytic activity is a result of increased Pt–OH formation on nanocrystal aggregates at lower potentials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  CAS  Google Scholar 

  2. Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 34:6902–6916

    Article  CAS  Google Scholar 

  3. Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  CAS  Google Scholar 

  4. Subhramannia M, Pillai VK (2008) Shape-dependent electrocatalytic activity of platinum nanostructures. J Mater Chem 18:5858–5870

    Article  CAS  Google Scholar 

  5. Leger JM (2001) Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J Appl Electrochem 31:767–771

    Article  CAS  Google Scholar 

  6. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  7. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas C, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  8. Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707–3714

    Article  CAS  Google Scholar 

  9. Rhen FMF, McKeown C (2017) Enhanced methanol oxidation on strained Pt films. J Phys Chem C 121:2556–2562

    Article  CAS  Google Scholar 

  10. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  11. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  12. Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc 126:7194–7195

    Article  CAS  Google Scholar 

  13. Lu B-A, Du J-H, Sheng T, Tian N, Xiao J, Liu L, Xu B-B, Zhou Z-Y, Sun S-G (2016) Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity. Nanoscale 8:11559–11564

    Article  CAS  Google Scholar 

  14. Zhou Z-Y, Huang Z-Z, Chen D-J, Wang Q, Tian N, Sun S-G (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49:411–414

    Article  CAS  Google Scholar 

  15. Zhou L-N, Zhang X-T, Wang Z-H, Guo S, Li Y-J (2016) Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem Commun 52:12737–12740

    Article  CAS  Google Scholar 

  16. Peng Z, You H, Wu J, Yang H (2010) Electrochemical synthesis and catalytic property of Sub-10 nm platinum cubic nanoboxes. Nano Lett 10:1492–1496

    Article  CAS  Google Scholar 

  17. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  18. Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3:2054–2073

    Article  CAS  Google Scholar 

  19. Xia BY, Wu HB, Yan Y, Lou XW, Wang X (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485

    Article  CAS  Google Scholar 

  20. Lee H-B-R, Baeck SH, Jaramillo TF, Bent SF (2013) Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. Nano Lett 13:457–463

    Article  CAS  Google Scholar 

  21. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430

    Article  CAS  Google Scholar 

  22. Kawasaki JK, Arnold CB (2011) Synthesis of platinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano Lett 11:781–785

    Article  CAS  Google Scholar 

  23. Zhang G, Sun S, Cai M, Zhang Y, Li R, Sun X (2013) Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction. Sci Rep 3:1526–1534

    Article  Google Scholar 

  24. Khi NT, Yoon J, Baik H, Lee S, Ahn DJ, Kwon SJ, Lee K (2014) Twinning boundary-elongated hierarchical Pt dendrites with an axially twinned nanorod core for excellent catalytic activity. CrystEngComm 16:8312–8316

    Article  CAS  Google Scholar 

  25. Sun YG, Mayers B, Xia YN (2003) Metal nanostructures with hollow interiors. Adv Mater 15:641–646

    Article  CAS  Google Scholar 

  26. Bi Y, Lu G (2009) Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxidation. Electrochem Commun 11:45–49

    Article  CAS  Google Scholar 

  27. Ci S, Zou J, Zeng G, Luo S, Wen Z (2012) Single crystalline Pt nanotubes with superior electrocatalytic stability. J Mater Chem 22:16732–16737

    Article  CAS  Google Scholar 

  28. Kim SM, Liu L, Kim DJ, Park S (2015) Vertically aligned double-walled platinum nanotubes decorated with inner fibrils for their enhanced electrocatalytic properties. J Phys Chem C 119:23075–23081

    Article  CAS  Google Scholar 

  29. Alia SM, Zhang G, Kisailus D, Li DS, Gu S, Jensen K, Yan YS (2010) Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv Funct Mater 20:3742–3746

    Article  CAS  Google Scholar 

  30. Luo Y, Lee SK, Hofmeister H, Steinhart M, Gosele U (2004) Pt nanoshell tubes by template wetting. Nano Lett 4:143–147

    Article  CAS  Google Scholar 

  31. Roscher V, Licklederer M, Schumacher J, Rios GR, Hoffmann B, Christiansen S, Bachmann J (2014) Accurate tuning of ordered nanotubular platinum electrodes by galvanic plating. Dalton Trans 43:4345–4350

    Article  CAS  Google Scholar 

  32. Zhao Y, Guo YG, Zhang YL, Jiao K (2004) Fabrication and characterization of highly ordered Pt nanotubule arrays. Phys Chem Chem Phys 6:1766–1768

    Article  CAS  Google Scholar 

  33. Muench F, Kaserer S, Kunz U, Svoboda I, Broetz J, Lauterbach S, Kleebe H-J, Roth C, Ensinger W (2011) Electroless synthesis of platinum and platinum-ruthenium nanotubes and their application in methanol oxidation. J Mater Chem 21:6286–6291

    Article  CAS  Google Scholar 

  34. Chakarvarti SK, Vetter J (1998) Template synthesis—a membrane based technology for generation of nano-/micro materials: a review. Radiat Meas 29:149–159

    Article  CAS  Google Scholar 

  35. Richardson D, Kingston S, Rhen FMF (2016) Investigation of the magnetization reversal mechanism of electrolessly deposited Co-B nanotubes. AIP Adv 6:056113

    Article  Google Scholar 

  36. Rhen FMF, Richardson D, Pomar CAD, Souza JA (2016) Investigation of magnetic properties of Ni-B nanotubes at low temperatures. IEEE Trans Magn 52:1–4

    Article  Google Scholar 

  37. Richardson D, Rhen FMF (2015) Increasing the magnetization of electrolessly deposited Ni-B nanotubes. IEEE Trans Magn 51:1–4

    Google Scholar 

  38. Richardson D, Rhen FMF (2015) Investigation of the electroless deposition process of magnetic nanostructures. ECS Trans 64:39–48

    Article  CAS  Google Scholar 

  39. Brenner A, Riddell GE (1946) Nickel plating on steel by chemical reduction. J Res Natl Bur Stand 37:31–34

    Article  CAS  Google Scholar 

  40. Ohno I (1991) Electrochemistry of electroless plating. Mater Sci Eng A 146:33–49

    Article  Google Scholar 

  41. Shacham-Diamand Y, Osaka T, Okinaka Y, Sugiyama A, Dubin V (2015) 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectron Eng 132:35–45

    Article  CAS  Google Scholar 

  42. Wei X, Roper DK (2014) Tin sensitization for electroless plating review. J Electrochem Soc 161:D235–D242

    Article  CAS  Google Scholar 

  43. Rao CRK, Trivedi DC (2005) Chemical and electrochemical depositions of platinum group metals and their applications. Coord Chem Rev 249:613–631

    Article  CAS  Google Scholar 

  44. Koslov AS, Palanisamy T, Narasimhan D (2002) US Patent 6,391,477

  45. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  46. Wulff G (1901) Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z Kristallogr Cryst Mater 34:449–530

    Article  CAS  Google Scholar 

  47. Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649

    Article  CAS  Google Scholar 

  48. Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  49. Scanlon MD, Salaj-Kosla U, Belochapkine S, MacAodha D, Leech D, Ding Y, Magner E (2012) Characterization of nanoporous gold electrodes for bioelectrochemical applications. Langmuir 28:2251–2261

    Article  CAS  Google Scholar 

  50. Pajkossy T, Kolb DM (2001) Double layer capacitance of Pt(111) single crystal electrodes. Electrochim Acta 46:3063–3071

    Article  CAS  Google Scholar 

  51. Tsou Y-M, Cao L, De Castro E (2008) Crucial role of low coordination sites in oxygen reduction, Co stripping, and size effect for nano-sized Pt particles. ECS Trans 13:67–84

    Article  CAS  Google Scholar 

  52. Huang Y-F, Kooyman PJ, Koper MTM (2016) Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman Spectroscopy. Nat Commun 7:12440–12441

    Article  CAS  Google Scholar 

  53. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford, p 203

    Google Scholar 

  54. Mostafa E, Baltruschat H (2014) Quasi-continuous determination of the apparent transfer coefficient of methanol oxidation using a potential modulation technique under convection conditions. Electrocatal 5:75–86

    Article  CAS  Google Scholar 

  55. Nordlund J, Lindbergh G (2004) Temperature-dependant kinetics of the anode in the DMFC. J Electrochem Soc 151:A1357–A1362

    Article  CAS  Google Scholar 

  56. Nordlund J, Lindbergh G (2002) A model for the porous direct methanol fuel cells anode. J Electrochem Soc 149:A1107–A1113

    Article  CAS  Google Scholar 

  57. Zhao X, Zhu J, Liang L, Liao J, Liu C, Xing W (2012) Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction. J Mater Chem 22:19718–19725

    Article  CAS  Google Scholar 

  58. Wang X, Sun Y, Hu J, Li Y-J, Yeung ES (2015) Electrochemical fabrication of hydrangea macrophylla flower-like Pt hierarchical nanostructures and their properties for methanol electrooxidation. RSC Adv 5:13538–13543

    Article  CAS  Google Scholar 

  59. Liu J, Chen B, Ni Z, Deng Y, Han X, Hu W, Zhong C (2016) Improving the electrocatalytic activity of Pt monolayer catalysts for electrooxidation of methanol, ethanol and ammonia by tailoring the surface morphology of the supporting core. ChemElectroChem 3:537–551

    Article  CAS  Google Scholar 

  60. Zhang Q, Jiang F, Yue R, Du Y (2014) Electrochemically fabricated flower-like graphene as a highly efficient Pt electrocatalyst support for methanol oxidation. RSC Adv 4:12105–12108

    Article  CAS  Google Scholar 

  61. Zhou LN, Zhang XT, Shen WJ, Sun SG, Li YJ (2015) Monolayer of close-packed pt nanocrystals on a reduced graphene oxide (RGO) nanosheet and its enhanced catalytic performance towards methanol electrooxidation. RSC Adv 5:46017–46025

    Article  CAS  Google Scholar 

  62. Zhao X, Zhu J, Liang L, Li C, Liu C, Liao J, Xing W (2014) biomass-derived N-doped carbon and its application in electrocatalysis. Appl Catal B 154:177–182

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Science Foundation Ireland grant number 12/IP/1692 and the HEA PRTLI4 programme (INSPIRE). The authors are thankful to Professor Edmond Magner, Professor Noel Buckley, and their teams for access to characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. F. Rhen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 571 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKeown, C., Rhen, F.M.F. Pt nanotube network with high activity for methanol oxidation. J Appl Electrochem 48, 165–173 (2018). https://doi.org/10.1007/s10800-017-1141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1141-7

Keywords

Navigation